| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elun | GIF version | ||
| Description: Expansion of membership in class union. Theorem 12 of [Suppes] p. 25. (Contributed by NM, 7-Aug-1994.) |
| Ref | Expression |
|---|---|
| elun | ⊢ (𝐴 ∈ (𝐵 ∪ 𝐶) ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 ∈ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2774 | . 2 ⊢ (𝐴 ∈ (𝐵 ∪ 𝐶) → 𝐴 ∈ V) | |
| 2 | elex 2774 | . . 3 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | |
| 3 | elex 2774 | . . 3 ⊢ (𝐴 ∈ 𝐶 → 𝐴 ∈ V) | |
| 4 | 2, 3 | jaoi 717 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∨ 𝐴 ∈ 𝐶) → 𝐴 ∈ V) |
| 5 | eleq1 2259 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 6 | eleq1 2259 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐶 ↔ 𝐴 ∈ 𝐶)) | |
| 7 | 5, 6 | orbi12d 794 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶) ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 ∈ 𝐶))) |
| 8 | df-un 3161 | . . 3 ⊢ (𝐵 ∪ 𝐶) = {𝑥 ∣ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶)} | |
| 9 | 7, 8 | elab2g 2911 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ (𝐵 ∪ 𝐶) ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 ∈ 𝐶))) |
| 10 | 1, 4, 9 | pm5.21nii 705 | 1 ⊢ (𝐴 ∈ (𝐵 ∪ 𝐶) ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 ∈ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∨ wo 709 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ∪ cun 3155 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 |
| This theorem is referenced by: uneqri 3306 uncom 3308 uneq1 3311 unass 3321 ssun1 3327 unss1 3333 ssequn1 3334 unss 3338 rexun 3344 ralunb 3345 unssdif 3399 unssin 3403 inssun 3404 indi 3411 undi 3412 difundi 3416 difindiss 3418 undif3ss 3425 symdifxor 3430 rabun2 3443 reuun2 3447 undif4 3514 ssundifim 3535 dcun 3561 dfpr2 3642 eltpg 3668 pwprss 3836 pwtpss 3837 uniun 3859 intun 3906 iunun 3996 iunxun 3997 iinuniss 4000 brun 4085 undifexmid 4227 exmidundif 4240 exmidundifim 4241 exmid1stab 4242 pwunss 4319 elsuci 4439 elsucg 4440 elsuc2g 4441 ordsucim 4537 sucprcreg 4586 opthprc 4715 xpundi 4720 xpundir 4721 funun 5303 mptun 5392 unpreima 5690 reldmtpos 6320 dftpos4 6330 tpostpos 6331 onunsnss 6987 unfidisj 6992 undifdcss 6993 fidcenumlemrks 7028 djulclb 7130 eldju 7143 eldju2ndl 7147 eldju2ndr 7148 ctssdccl 7186 pw1nel3 7314 sucpw1nel3 7316 elnn0 9268 un0addcl 9299 un0mulcl 9300 elxnn0 9331 ltxr 9867 elxr 9868 fzsplit2 10142 elfzp1 10164 uzsplit 10184 elfzp12 10191 fz01or 10203 fzosplit 10270 fzouzsplit 10272 elfzonlteqm1 10303 fzosplitsni 10328 hashinfuni 10886 hashennnuni 10888 hashunlem 10913 zfz1isolemiso 10948 summodclem3 11562 fsumsplit 11589 fsumsplitsn 11592 sumsplitdc 11614 fprodsplitdc 11778 fprodsplit 11779 fprodunsn 11786 fprodsplitsn 11815 nnnn0modprm0 12449 prm23lt5 12457 reopnap 14866 plyaddlem1 15067 plymullem1 15068 plycoeid3 15077 plycj 15081 lgsdir2 15358 2lgslem3 15426 2lgsoddprmlem3 15436 djulclALT 15531 djurclALT 15532 bj-charfun 15537 bj-nntrans 15681 bj-nnelirr 15683 |
| Copyright terms: Public domain | W3C validator |