| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elun | GIF version | ||
| Description: Expansion of membership in class union. Theorem 12 of [Suppes] p. 25. (Contributed by NM, 7-Aug-1994.) |
| Ref | Expression |
|---|---|
| elun | ⊢ (𝐴 ∈ (𝐵 ∪ 𝐶) ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 ∈ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2784 | . 2 ⊢ (𝐴 ∈ (𝐵 ∪ 𝐶) → 𝐴 ∈ V) | |
| 2 | elex 2784 | . . 3 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | |
| 3 | elex 2784 | . . 3 ⊢ (𝐴 ∈ 𝐶 → 𝐴 ∈ V) | |
| 4 | 2, 3 | jaoi 718 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∨ 𝐴 ∈ 𝐶) → 𝐴 ∈ V) |
| 5 | eleq1 2269 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 6 | eleq1 2269 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐶 ↔ 𝐴 ∈ 𝐶)) | |
| 7 | 5, 6 | orbi12d 795 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶) ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 ∈ 𝐶))) |
| 8 | df-un 3171 | . . 3 ⊢ (𝐵 ∪ 𝐶) = {𝑥 ∣ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶)} | |
| 9 | 7, 8 | elab2g 2921 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ (𝐵 ∪ 𝐶) ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 ∈ 𝐶))) |
| 10 | 1, 4, 9 | pm5.21nii 706 | 1 ⊢ (𝐴 ∈ (𝐵 ∪ 𝐶) ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 ∈ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∨ wo 710 = wceq 1373 ∈ wcel 2177 Vcvv 2773 ∪ cun 3165 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3171 |
| This theorem is referenced by: uneqri 3316 uncom 3318 uneq1 3321 unass 3331 ssun1 3337 unss1 3343 ssequn1 3344 unss 3348 rexun 3354 ralunb 3355 unssdif 3409 unssin 3413 inssun 3414 indi 3421 undi 3422 difundi 3426 difindiss 3428 undif3ss 3435 symdifxor 3440 rabun2 3453 reuun2 3457 undif4 3524 ssundifim 3545 dcun 3571 dfpr2 3653 eltpg 3679 pwprss 3848 pwtpss 3849 uniun 3871 intun 3918 iunun 4008 iunxun 4009 iinuniss 4012 brun 4099 undifexmid 4241 exmidundif 4254 exmidundifim 4255 exmid1stab 4256 pwunss 4334 elsuci 4454 elsucg 4455 elsuc2g 4456 ordsucim 4552 sucprcreg 4601 opthprc 4730 xpundi 4735 xpundir 4736 funun 5320 mptun 5413 unpreima 5712 reldmtpos 6346 dftpos4 6356 tpostpos 6357 onunsnss 7021 unfidisj 7026 undifdcss 7027 fidcenumlemrks 7062 djulclb 7164 eldju 7177 eldju2ndl 7181 eldju2ndr 7182 ctssdccl 7220 pw1nel3 7350 sucpw1nel3 7352 elnn0 9304 un0addcl 9335 un0mulcl 9336 elxnn0 9367 ltxr 9904 elxr 9905 fzsplit2 10179 elfzp1 10201 uzsplit 10221 elfzp12 10228 fz01or 10240 fzosplit 10308 fzouzsplit 10310 elfzonlteqm1 10346 fzosplitsni 10371 hashinfuni 10929 hashennnuni 10931 hashunlem 10956 zfz1isolemiso 10991 ccatrn 11073 summodclem3 11735 fsumsplit 11762 fsumsplitsn 11765 sumsplitdc 11787 fprodsplitdc 11951 fprodsplit 11952 fprodunsn 11959 fprodsplitsn 11988 nnnn0modprm0 12622 prm23lt5 12630 reopnap 15062 plyaddlem1 15263 plymullem1 15264 plycoeid3 15273 plycj 15277 lgsdir2 15554 2lgslem3 15622 2lgsoddprmlem3 15632 djulclALT 15811 djurclALT 15812 bj-charfun 15817 bj-nntrans 15961 bj-nnelirr 15963 |
| Copyright terms: Public domain | W3C validator |