| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elun | GIF version | ||
| Description: Expansion of membership in class union. Theorem 12 of [Suppes] p. 25. (Contributed by NM, 7-Aug-1994.) |
| Ref | Expression |
|---|---|
| elun | ⊢ (𝐴 ∈ (𝐵 ∪ 𝐶) ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 ∈ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2791 | . 2 ⊢ (𝐴 ∈ (𝐵 ∪ 𝐶) → 𝐴 ∈ V) | |
| 2 | elex 2791 | . . 3 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | |
| 3 | elex 2791 | . . 3 ⊢ (𝐴 ∈ 𝐶 → 𝐴 ∈ V) | |
| 4 | 2, 3 | jaoi 720 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∨ 𝐴 ∈ 𝐶) → 𝐴 ∈ V) |
| 5 | eleq1 2272 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 6 | eleq1 2272 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐶 ↔ 𝐴 ∈ 𝐶)) | |
| 7 | 5, 6 | orbi12d 797 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶) ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 ∈ 𝐶))) |
| 8 | df-un 3181 | . . 3 ⊢ (𝐵 ∪ 𝐶) = {𝑥 ∣ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶)} | |
| 9 | 7, 8 | elab2g 2930 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ (𝐵 ∪ 𝐶) ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 ∈ 𝐶))) |
| 10 | 1, 4, 9 | pm5.21nii 708 | 1 ⊢ (𝐴 ∈ (𝐵 ∪ 𝐶) ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 ∈ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∨ wo 712 = wceq 1375 ∈ wcel 2180 Vcvv 2779 ∪ cun 3175 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-v 2781 df-un 3181 |
| This theorem is referenced by: uneqri 3326 uncom 3328 uneq1 3331 unass 3341 ssun1 3347 unss1 3353 ssequn1 3354 unss 3358 rexun 3364 ralunb 3365 unssdif 3419 unssin 3423 inssun 3424 indi 3431 undi 3432 difundi 3436 difindiss 3438 undif3ss 3445 symdifxor 3450 rabun2 3463 reuun2 3467 undif4 3534 ssundifim 3555 dcun 3581 dfpr2 3665 eltpg 3691 pwprss 3863 pwtpss 3864 uniun 3886 intun 3933 iunun 4023 iunxun 4024 iinuniss 4027 brun 4114 undifexmid 4256 exmidundif 4269 exmidundifim 4270 exmid1stab 4271 pwunss 4351 elsuci 4471 elsucg 4472 elsuc2g 4473 ordsucim 4569 sucprcreg 4618 opthprc 4747 xpundi 4752 xpundir 4753 funun 5338 mptun 5431 unpreima 5733 reldmtpos 6369 dftpos4 6379 tpostpos 6380 onunsnss 7047 unfidisj 7052 undifdcss 7053 fidcenumlemrks 7088 djulclb 7190 eldju 7203 eldju2ndl 7207 eldju2ndr 7208 ctssdccl 7246 pw1nel3 7384 sucpw1nel3 7386 elnn0 9339 un0addcl 9370 un0mulcl 9371 elxnn0 9402 ltxr 9939 elxr 9940 fzsplit2 10214 elfzp1 10236 uzsplit 10256 elfzp12 10263 fz01or 10275 fzosplit 10343 fzouzsplit 10345 elfzonlteqm1 10383 fzosplitsni 10408 hashinfuni 10966 hashennnuni 10968 hashunlem 10993 zfz1isolemiso 11028 ccatrn 11110 cats1un 11219 summodclem3 11857 fsumsplit 11884 fsumsplitsn 11887 sumsplitdc 11909 fprodsplitdc 12073 fprodsplit 12074 fprodunsn 12081 fprodsplitsn 12110 nnnn0modprm0 12744 prm23lt5 12752 reopnap 15185 plyaddlem1 15386 plymullem1 15387 plycoeid3 15396 plycj 15400 lgsdir2 15677 2lgslem3 15745 2lgsoddprmlem3 15755 djulclALT 16075 djurclALT 16076 bj-charfun 16080 bj-nntrans 16224 bj-nnelirr 16226 |
| Copyright terms: Public domain | W3C validator |