| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elun | GIF version | ||
| Description: Expansion of membership in class union. Theorem 12 of [Suppes] p. 25. (Contributed by NM, 7-Aug-1994.) |
| Ref | Expression |
|---|---|
| elun | ⊢ (𝐴 ∈ (𝐵 ∪ 𝐶) ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 ∈ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2811 | . 2 ⊢ (𝐴 ∈ (𝐵 ∪ 𝐶) → 𝐴 ∈ V) | |
| 2 | elex 2811 | . . 3 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | |
| 3 | elex 2811 | . . 3 ⊢ (𝐴 ∈ 𝐶 → 𝐴 ∈ V) | |
| 4 | 2, 3 | jaoi 721 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∨ 𝐴 ∈ 𝐶) → 𝐴 ∈ V) |
| 5 | eleq1 2292 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 6 | eleq1 2292 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐶 ↔ 𝐴 ∈ 𝐶)) | |
| 7 | 5, 6 | orbi12d 798 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶) ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 ∈ 𝐶))) |
| 8 | df-un 3201 | . . 3 ⊢ (𝐵 ∪ 𝐶) = {𝑥 ∣ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶)} | |
| 9 | 7, 8 | elab2g 2950 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ (𝐵 ∪ 𝐶) ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 ∈ 𝐶))) |
| 10 | 1, 4, 9 | pm5.21nii 709 | 1 ⊢ (𝐴 ∈ (𝐵 ∪ 𝐶) ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 ∈ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∨ wo 713 = wceq 1395 ∈ wcel 2200 Vcvv 2799 ∪ cun 3195 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 |
| This theorem is referenced by: uneqri 3346 uncom 3348 uneq1 3351 unass 3361 ssun1 3367 unss1 3373 ssequn1 3374 unss 3378 rexun 3384 ralunb 3385 unssdif 3439 unssin 3443 inssun 3444 indi 3451 undi 3452 difundi 3456 difindiss 3458 undif3ss 3465 symdifxor 3470 rabun2 3483 reuun2 3487 undif4 3554 ssundifim 3575 dcun 3601 dfpr2 3685 eltpg 3711 pwprss 3884 pwtpss 3885 uniun 3907 intun 3954 iunun 4044 iunxun 4045 iinuniss 4048 brun 4135 undifexmid 4277 exmidundif 4290 exmidundifim 4291 exmid1stab 4292 pwunss 4374 elsuci 4494 elsucg 4495 elsuc2g 4496 ordsucim 4592 sucprcreg 4641 opthprc 4770 xpundi 4775 xpundir 4776 funun 5362 mptun 5455 unpreima 5762 reldmtpos 6405 dftpos4 6415 tpostpos 6416 onunsnss 7087 unfidisj 7092 undifdcss 7093 fidcenumlemrks 7128 djulclb 7230 eldju 7243 eldju2ndl 7247 eldju2ndr 7248 ctssdccl 7286 pw1nel3 7424 sucpw1nel3 7426 elnn0 9379 un0addcl 9410 un0mulcl 9411 elxnn0 9442 ltxr 9979 elxr 9980 fzsplit2 10254 elfzp1 10276 uzsplit 10296 elfzp12 10303 fz01or 10315 fzosplit 10383 fzouzsplit 10385 elfzonlteqm1 10424 fzosplitsni 10449 hashinfuni 11007 hashennnuni 11009 hashunlem 11034 zfz1isolemiso 11069 ccatrn 11152 cats1un 11261 summodclem3 11899 fsumsplit 11926 fsumsplitsn 11929 sumsplitdc 11951 fprodsplitdc 12115 fprodsplit 12116 fprodunsn 12123 fprodsplitsn 12152 nnnn0modprm0 12786 prm23lt5 12794 reopnap 15228 plyaddlem1 15429 plymullem1 15430 plycoeid3 15439 plycj 15443 lgsdir2 15720 2lgslem3 15788 2lgsoddprmlem3 15798 djulclALT 16189 djurclALT 16190 bj-charfun 16194 bj-nntrans 16338 bj-nnelirr 16340 |
| Copyright terms: Public domain | W3C validator |