Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elun | GIF version |
Description: Expansion of membership in class union. Theorem 12 of [Suppes] p. 25. (Contributed by NM, 7-Aug-1994.) |
Ref | Expression |
---|---|
elun | ⊢ (𝐴 ∈ (𝐵 ∪ 𝐶) ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 ∈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2741 | . 2 ⊢ (𝐴 ∈ (𝐵 ∪ 𝐶) → 𝐴 ∈ V) | |
2 | elex 2741 | . . 3 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | |
3 | elex 2741 | . . 3 ⊢ (𝐴 ∈ 𝐶 → 𝐴 ∈ V) | |
4 | 2, 3 | jaoi 711 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∨ 𝐴 ∈ 𝐶) → 𝐴 ∈ V) |
5 | eleq1 2233 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
6 | eleq1 2233 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐶 ↔ 𝐴 ∈ 𝐶)) | |
7 | 5, 6 | orbi12d 788 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶) ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 ∈ 𝐶))) |
8 | df-un 3125 | . . 3 ⊢ (𝐵 ∪ 𝐶) = {𝑥 ∣ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶)} | |
9 | 7, 8 | elab2g 2877 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ (𝐵 ∪ 𝐶) ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 ∈ 𝐶))) |
10 | 1, 4, 9 | pm5.21nii 699 | 1 ⊢ (𝐴 ∈ (𝐵 ∪ 𝐶) ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 ∈ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∨ wo 703 = wceq 1348 ∈ wcel 2141 Vcvv 2730 ∪ cun 3119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 |
This theorem is referenced by: uneqri 3269 uncom 3271 uneq1 3274 unass 3284 ssun1 3290 unss1 3296 ssequn1 3297 unss 3301 rexun 3307 ralunb 3308 unssdif 3362 unssin 3366 inssun 3367 indi 3374 undi 3375 difundi 3379 difindiss 3381 undif3ss 3388 symdifxor 3393 rabun2 3406 reuun2 3410 undif4 3477 ssundifim 3498 dcun 3525 dfpr2 3602 eltpg 3628 pwprss 3792 pwtpss 3793 uniun 3815 intun 3862 iunun 3951 iunxun 3952 iinuniss 3955 brun 4040 undifexmid 4179 exmidundif 4192 exmidundifim 4193 pwunss 4268 elsuci 4388 elsucg 4389 elsuc2g 4390 ordsucim 4484 sucprcreg 4533 opthprc 4662 xpundi 4667 xpundir 4668 funun 5242 mptun 5329 unpreima 5621 reldmtpos 6232 dftpos4 6242 tpostpos 6243 onunsnss 6894 unfidisj 6899 undifdcss 6900 fidcenumlemrks 6930 djulclb 7032 eldju 7045 eldju2ndl 7049 eldju2ndr 7050 ctssdccl 7088 pw1nel3 7208 sucpw1nel3 7210 elnn0 9137 un0addcl 9168 un0mulcl 9169 elxnn0 9200 ltxr 9732 elxr 9733 fzsplit2 10006 elfzp1 10028 uzsplit 10048 elfzp12 10055 fz01or 10067 fzosplit 10133 fzouzsplit 10135 elfzonlteqm1 10166 fzosplitsni 10191 hashinfuni 10711 hashennnuni 10713 hashunlem 10739 zfz1isolemiso 10774 summodclem3 11343 fsumsplit 11370 fsumsplitsn 11373 sumsplitdc 11395 fprodsplitdc 11559 fprodsplit 11560 fprodunsn 11567 fprodsplitsn 11596 nnnn0modprm0 12209 prm23lt5 12217 reopnap 13332 lgsdir2 13728 djulclALT 13836 djurclALT 13837 bj-charfun 13842 bj-nntrans 13986 bj-nnelirr 13988 exmid1stab 14033 |
Copyright terms: Public domain | W3C validator |