| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elun | GIF version | ||
| Description: Expansion of membership in class union. Theorem 12 of [Suppes] p. 25. (Contributed by NM, 7-Aug-1994.) |
| Ref | Expression |
|---|---|
| elun | ⊢ (𝐴 ∈ (𝐵 ∪ 𝐶) ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 ∈ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2774 | . 2 ⊢ (𝐴 ∈ (𝐵 ∪ 𝐶) → 𝐴 ∈ V) | |
| 2 | elex 2774 | . . 3 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | |
| 3 | elex 2774 | . . 3 ⊢ (𝐴 ∈ 𝐶 → 𝐴 ∈ V) | |
| 4 | 2, 3 | jaoi 717 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∨ 𝐴 ∈ 𝐶) → 𝐴 ∈ V) |
| 5 | eleq1 2259 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 6 | eleq1 2259 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐶 ↔ 𝐴 ∈ 𝐶)) | |
| 7 | 5, 6 | orbi12d 794 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶) ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 ∈ 𝐶))) |
| 8 | df-un 3161 | . . 3 ⊢ (𝐵 ∪ 𝐶) = {𝑥 ∣ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶)} | |
| 9 | 7, 8 | elab2g 2911 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ (𝐵 ∪ 𝐶) ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 ∈ 𝐶))) |
| 10 | 1, 4, 9 | pm5.21nii 705 | 1 ⊢ (𝐴 ∈ (𝐵 ∪ 𝐶) ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 ∈ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∨ wo 709 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ∪ cun 3155 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 |
| This theorem is referenced by: uneqri 3305 uncom 3307 uneq1 3310 unass 3320 ssun1 3326 unss1 3332 ssequn1 3333 unss 3337 rexun 3343 ralunb 3344 unssdif 3398 unssin 3402 inssun 3403 indi 3410 undi 3411 difundi 3415 difindiss 3417 undif3ss 3424 symdifxor 3429 rabun2 3442 reuun2 3446 undif4 3513 ssundifim 3534 dcun 3560 dfpr2 3641 eltpg 3667 pwprss 3835 pwtpss 3836 uniun 3858 intun 3905 iunun 3995 iunxun 3996 iinuniss 3999 brun 4084 undifexmid 4226 exmidundif 4239 exmidundifim 4240 exmid1stab 4241 pwunss 4318 elsuci 4438 elsucg 4439 elsuc2g 4440 ordsucim 4536 sucprcreg 4585 opthprc 4714 xpundi 4719 xpundir 4720 funun 5302 mptun 5389 unpreima 5687 reldmtpos 6311 dftpos4 6321 tpostpos 6322 onunsnss 6978 unfidisj 6983 undifdcss 6984 fidcenumlemrks 7019 djulclb 7121 eldju 7134 eldju2ndl 7138 eldju2ndr 7139 ctssdccl 7177 pw1nel3 7298 sucpw1nel3 7300 elnn0 9251 un0addcl 9282 un0mulcl 9283 elxnn0 9314 ltxr 9850 elxr 9851 fzsplit2 10125 elfzp1 10147 uzsplit 10167 elfzp12 10174 fz01or 10186 fzosplit 10253 fzouzsplit 10255 elfzonlteqm1 10286 fzosplitsni 10311 hashinfuni 10869 hashennnuni 10871 hashunlem 10896 zfz1isolemiso 10931 summodclem3 11545 fsumsplit 11572 fsumsplitsn 11575 sumsplitdc 11597 fprodsplitdc 11761 fprodsplit 11762 fprodunsn 11769 fprodsplitsn 11798 nnnn0modprm0 12424 prm23lt5 12432 reopnap 14782 plyaddlem1 14983 plymullem1 14984 plycoeid3 14993 plycj 14997 lgsdir2 15274 2lgslem3 15342 2lgsoddprmlem3 15352 djulclALT 15447 djurclALT 15448 bj-charfun 15453 bj-nntrans 15597 bj-nnelirr 15599 |
| Copyright terms: Public domain | W3C validator |