Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcun GIF version

Theorem bdcun 15760
Description: The union of two bounded classes is bounded. (Contributed by BJ, 3-Oct-2019.)
Hypotheses
Ref Expression
bdcdif.1 BOUNDED 𝐴
bdcdif.2 BOUNDED 𝐵
Assertion
Ref Expression
bdcun BOUNDED (𝐴𝐵)

Proof of Theorem bdcun
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 bdcdif.1 . . . . 5 BOUNDED 𝐴
21bdeli 15744 . . . 4 BOUNDED 𝑥𝐴
3 bdcdif.2 . . . . 5 BOUNDED 𝐵
43bdeli 15744 . . . 4 BOUNDED 𝑥𝐵
52, 4ax-bdor 15714 . . 3 BOUNDED (𝑥𝐴𝑥𝐵)
65bdcab 15747 . 2 BOUNDED {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
7 df-un 3169 . 2 (𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
86, 7bdceqir 15742 1 BOUNDED (𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wo 709  wcel 2175  {cab 2190  cun 3163  BOUNDED wbdc 15738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-4 1532  ax-17 1548  ax-ial 1556  ax-ext 2186  ax-bd0 15711  ax-bdor 15714  ax-bdsb 15720
This theorem depends on definitions:  df-bi 117  df-clab 2191  df-cleq 2197  df-clel 2200  df-un 3169  df-bdc 15739
This theorem is referenced by:  bdcpr  15769  bdctp  15770  bdcsuc  15778
  Copyright terms: Public domain W3C validator