Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcun GIF version

Theorem bdcun 15299
Description: The union of two bounded classes is bounded. (Contributed by BJ, 3-Oct-2019.)
Hypotheses
Ref Expression
bdcdif.1 BOUNDED 𝐴
bdcdif.2 BOUNDED 𝐵
Assertion
Ref Expression
bdcun BOUNDED (𝐴𝐵)

Proof of Theorem bdcun
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 bdcdif.1 . . . . 5 BOUNDED 𝐴
21bdeli 15283 . . . 4 BOUNDED 𝑥𝐴
3 bdcdif.2 . . . . 5 BOUNDED 𝐵
43bdeli 15283 . . . 4 BOUNDED 𝑥𝐵
52, 4ax-bdor 15253 . . 3 BOUNDED (𝑥𝐴𝑥𝐵)
65bdcab 15286 . 2 BOUNDED {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
7 df-un 3157 . 2 (𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
86, 7bdceqir 15281 1 BOUNDED (𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wo 709  wcel 2164  {cab 2179  cun 3151  BOUNDED wbdc 15277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-17 1537  ax-ial 1545  ax-ext 2175  ax-bd0 15250  ax-bdor 15253  ax-bdsb 15259
This theorem depends on definitions:  df-bi 117  df-clab 2180  df-cleq 2186  df-clel 2189  df-un 3157  df-bdc 15278
This theorem is referenced by:  bdcpr  15308  bdctp  15309  bdcsuc  15317
  Copyright terms: Public domain W3C validator