| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdcun | GIF version | ||
| Description: The union of two bounded classes is bounded. (Contributed by BJ, 3-Oct-2019.) |
| Ref | Expression |
|---|---|
| bdcdif.1 | ⊢ BOUNDED 𝐴 |
| bdcdif.2 | ⊢ BOUNDED 𝐵 |
| Ref | Expression |
|---|---|
| bdcun | ⊢ BOUNDED (𝐴 ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdcdif.1 | . . . . 5 ⊢ BOUNDED 𝐴 | |
| 2 | 1 | bdeli 16209 | . . . 4 ⊢ BOUNDED 𝑥 ∈ 𝐴 |
| 3 | bdcdif.2 | . . . . 5 ⊢ BOUNDED 𝐵 | |
| 4 | 3 | bdeli 16209 | . . . 4 ⊢ BOUNDED 𝑥 ∈ 𝐵 |
| 5 | 2, 4 | ax-bdor 16179 | . . 3 ⊢ BOUNDED (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) |
| 6 | 5 | bdcab 16212 | . 2 ⊢ BOUNDED {𝑥 ∣ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)} |
| 7 | df-un 3201 | . 2 ⊢ (𝐴 ∪ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)} | |
| 8 | 6, 7 | bdceqir 16207 | 1 ⊢ BOUNDED (𝐴 ∪ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ∨ wo 713 ∈ wcel 2200 {cab 2215 ∪ cun 3195 BOUNDED wbdc 16203 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-ext 2211 ax-bd0 16176 ax-bdor 16179 ax-bdsb 16185 |
| This theorem depends on definitions: df-bi 117 df-clab 2216 df-cleq 2222 df-clel 2225 df-un 3201 df-bdc 16204 |
| This theorem is referenced by: bdcpr 16234 bdctp 16235 bdcsuc 16243 |
| Copyright terms: Public domain | W3C validator |