Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcun GIF version

Theorem bdcun 13897
Description: The union of two bounded classes is bounded. (Contributed by BJ, 3-Oct-2019.)
Hypotheses
Ref Expression
bdcdif.1 BOUNDED 𝐴
bdcdif.2 BOUNDED 𝐵
Assertion
Ref Expression
bdcun BOUNDED (𝐴𝐵)

Proof of Theorem bdcun
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 bdcdif.1 . . . . 5 BOUNDED 𝐴
21bdeli 13881 . . . 4 BOUNDED 𝑥𝐴
3 bdcdif.2 . . . . 5 BOUNDED 𝐵
43bdeli 13881 . . . 4 BOUNDED 𝑥𝐵
52, 4ax-bdor 13851 . . 3 BOUNDED (𝑥𝐴𝑥𝐵)
65bdcab 13884 . 2 BOUNDED {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
7 df-un 3125 . 2 (𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
86, 7bdceqir 13879 1 BOUNDED (𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wo 703  wcel 2141  {cab 2156  cun 3119  BOUNDED wbdc 13875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-17 1519  ax-ial 1527  ax-ext 2152  ax-bd0 13848  ax-bdor 13851  ax-bdsb 13857
This theorem depends on definitions:  df-bi 116  df-clab 2157  df-cleq 2163  df-clel 2166  df-un 3125  df-bdc 13876
This theorem is referenced by:  bdcpr  13906  bdctp  13907  bdcsuc  13915
  Copyright terms: Public domain W3C validator