Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdcun | GIF version |
Description: The union of two bounded classes is bounded. (Contributed by BJ, 3-Oct-2019.) |
Ref | Expression |
---|---|
bdcdif.1 | ⊢ BOUNDED 𝐴 |
bdcdif.2 | ⊢ BOUNDED 𝐵 |
Ref | Expression |
---|---|
bdcun | ⊢ BOUNDED (𝐴 ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdcdif.1 | . . . . 5 ⊢ BOUNDED 𝐴 | |
2 | 1 | bdeli 13728 | . . . 4 ⊢ BOUNDED 𝑥 ∈ 𝐴 |
3 | bdcdif.2 | . . . . 5 ⊢ BOUNDED 𝐵 | |
4 | 3 | bdeli 13728 | . . . 4 ⊢ BOUNDED 𝑥 ∈ 𝐵 |
5 | 2, 4 | ax-bdor 13698 | . . 3 ⊢ BOUNDED (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) |
6 | 5 | bdcab 13731 | . 2 ⊢ BOUNDED {𝑥 ∣ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)} |
7 | df-un 3120 | . 2 ⊢ (𝐴 ∪ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)} | |
8 | 6, 7 | bdceqir 13726 | 1 ⊢ BOUNDED (𝐴 ∪ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ∨ wo 698 ∈ wcel 2136 {cab 2151 ∪ cun 3114 BOUNDED wbdc 13722 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 ax-ext 2147 ax-bd0 13695 ax-bdor 13698 ax-bdsb 13704 |
This theorem depends on definitions: df-bi 116 df-clab 2152 df-cleq 2158 df-clel 2161 df-un 3120 df-bdc 13723 |
This theorem is referenced by: bdcpr 13753 bdctp 13754 bdcsuc 13762 |
Copyright terms: Public domain | W3C validator |