![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iinuniss | GIF version |
Description: A relationship involving union and indexed intersection. Exercise 23 of [Enderton] p. 33 but with equality changed to subset. (Contributed by Jim Kingdon, 19-Aug-2018.) |
Ref | Expression |
---|---|
iinuniss | ⊢ (𝐴 ∪ ∩ 𝐵) ⊆ ∩ 𝑥 ∈ 𝐵 (𝐴 ∪ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.32vr 2537 | . . . 4 ⊢ ((𝑦 ∈ 𝐴 ∨ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥) → ∀𝑥 ∈ 𝐵 (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝑥)) | |
2 | vex 2644 | . . . . . 6 ⊢ 𝑦 ∈ V | |
3 | 2 | elint2 3725 | . . . . 5 ⊢ (𝑦 ∈ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥) |
4 | 3 | orbi2i 720 | . . . 4 ⊢ ((𝑦 ∈ 𝐴 ∨ 𝑦 ∈ ∩ 𝐵) ↔ (𝑦 ∈ 𝐴 ∨ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥)) |
5 | elun 3164 | . . . . 5 ⊢ (𝑦 ∈ (𝐴 ∪ 𝑥) ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝑥)) | |
6 | 5 | ralbii 2400 | . . . 4 ⊢ (∀𝑥 ∈ 𝐵 𝑦 ∈ (𝐴 ∪ 𝑥) ↔ ∀𝑥 ∈ 𝐵 (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝑥)) |
7 | 1, 4, 6 | 3imtr4i 200 | . . 3 ⊢ ((𝑦 ∈ 𝐴 ∨ 𝑦 ∈ ∩ 𝐵) → ∀𝑥 ∈ 𝐵 𝑦 ∈ (𝐴 ∪ 𝑥)) |
8 | 7 | ss2abi 3116 | . 2 ⊢ {𝑦 ∣ (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ ∩ 𝐵)} ⊆ {𝑦 ∣ ∀𝑥 ∈ 𝐵 𝑦 ∈ (𝐴 ∪ 𝑥)} |
9 | df-un 3025 | . 2 ⊢ (𝐴 ∪ ∩ 𝐵) = {𝑦 ∣ (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ ∩ 𝐵)} | |
10 | df-iin 3763 | . 2 ⊢ ∩ 𝑥 ∈ 𝐵 (𝐴 ∪ 𝑥) = {𝑦 ∣ ∀𝑥 ∈ 𝐵 𝑦 ∈ (𝐴 ∪ 𝑥)} | |
11 | 8, 9, 10 | 3sstr4i 3088 | 1 ⊢ (𝐴 ∪ ∩ 𝐵) ⊆ ∩ 𝑥 ∈ 𝐵 (𝐴 ∪ 𝑥) |
Colors of variables: wff set class |
Syntax hints: ∨ wo 670 ∈ wcel 1448 {cab 2086 ∀wral 2375 ∪ cun 3019 ⊆ wss 3021 ∩ cint 3718 ∩ ciin 3761 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 |
This theorem depends on definitions: df-bi 116 df-tru 1302 df-nf 1405 df-sb 1704 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ral 2380 df-v 2643 df-un 3025 df-in 3027 df-ss 3034 df-int 3719 df-iin 3763 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |