Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iinuniss | GIF version |
Description: A relationship involving union and indexed intersection. Exercise 23 of [Enderton] p. 33 but with equality changed to subset. (Contributed by Jim Kingdon, 19-Aug-2018.) |
Ref | Expression |
---|---|
iinuniss | ⊢ (𝐴 ∪ ∩ 𝐵) ⊆ ∩ 𝑥 ∈ 𝐵 (𝐴 ∪ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.32vr 2618 | . . . 4 ⊢ ((𝑦 ∈ 𝐴 ∨ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥) → ∀𝑥 ∈ 𝐵 (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝑥)) | |
2 | vex 2733 | . . . . . 6 ⊢ 𝑦 ∈ V | |
3 | 2 | elint2 3838 | . . . . 5 ⊢ (𝑦 ∈ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥) |
4 | 3 | orbi2i 757 | . . . 4 ⊢ ((𝑦 ∈ 𝐴 ∨ 𝑦 ∈ ∩ 𝐵) ↔ (𝑦 ∈ 𝐴 ∨ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥)) |
5 | elun 3268 | . . . . 5 ⊢ (𝑦 ∈ (𝐴 ∪ 𝑥) ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝑥)) | |
6 | 5 | ralbii 2476 | . . . 4 ⊢ (∀𝑥 ∈ 𝐵 𝑦 ∈ (𝐴 ∪ 𝑥) ↔ ∀𝑥 ∈ 𝐵 (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝑥)) |
7 | 1, 4, 6 | 3imtr4i 200 | . . 3 ⊢ ((𝑦 ∈ 𝐴 ∨ 𝑦 ∈ ∩ 𝐵) → ∀𝑥 ∈ 𝐵 𝑦 ∈ (𝐴 ∪ 𝑥)) |
8 | 7 | ss2abi 3219 | . 2 ⊢ {𝑦 ∣ (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ ∩ 𝐵)} ⊆ {𝑦 ∣ ∀𝑥 ∈ 𝐵 𝑦 ∈ (𝐴 ∪ 𝑥)} |
9 | df-un 3125 | . 2 ⊢ (𝐴 ∪ ∩ 𝐵) = {𝑦 ∣ (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ ∩ 𝐵)} | |
10 | df-iin 3876 | . 2 ⊢ ∩ 𝑥 ∈ 𝐵 (𝐴 ∪ 𝑥) = {𝑦 ∣ ∀𝑥 ∈ 𝐵 𝑦 ∈ (𝐴 ∪ 𝑥)} | |
11 | 8, 9, 10 | 3sstr4i 3188 | 1 ⊢ (𝐴 ∪ ∩ 𝐵) ⊆ ∩ 𝑥 ∈ 𝐵 (𝐴 ∪ 𝑥) |
Colors of variables: wff set class |
Syntax hints: ∨ wo 703 ∈ wcel 2141 {cab 2156 ∀wral 2448 ∪ cun 3119 ⊆ wss 3121 ∩ cint 3831 ∩ ciin 3874 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-int 3832 df-iin 3876 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |