ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iinuniss GIF version

Theorem iinuniss 3948
Description: A relationship involving union and indexed intersection. Exercise 23 of [Enderton] p. 33 but with equality changed to subset. (Contributed by Jim Kingdon, 19-Aug-2018.)
Assertion
Ref Expression
iinuniss (𝐴 𝐵) ⊆ 𝑥𝐵 (𝐴𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem iinuniss
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 r19.32vr 2614 . . . 4 ((𝑦𝐴 ∨ ∀𝑥𝐵 𝑦𝑥) → ∀𝑥𝐵 (𝑦𝐴𝑦𝑥))
2 vex 2729 . . . . . 6 𝑦 ∈ V
32elint2 3831 . . . . 5 (𝑦 𝐵 ↔ ∀𝑥𝐵 𝑦𝑥)
43orbi2i 752 . . . 4 ((𝑦𝐴𝑦 𝐵) ↔ (𝑦𝐴 ∨ ∀𝑥𝐵 𝑦𝑥))
5 elun 3263 . . . . 5 (𝑦 ∈ (𝐴𝑥) ↔ (𝑦𝐴𝑦𝑥))
65ralbii 2472 . . . 4 (∀𝑥𝐵 𝑦 ∈ (𝐴𝑥) ↔ ∀𝑥𝐵 (𝑦𝐴𝑦𝑥))
71, 4, 63imtr4i 200 . . 3 ((𝑦𝐴𝑦 𝐵) → ∀𝑥𝐵 𝑦 ∈ (𝐴𝑥))
87ss2abi 3214 . 2 {𝑦 ∣ (𝑦𝐴𝑦 𝐵)} ⊆ {𝑦 ∣ ∀𝑥𝐵 𝑦 ∈ (𝐴𝑥)}
9 df-un 3120 . 2 (𝐴 𝐵) = {𝑦 ∣ (𝑦𝐴𝑦 𝐵)}
10 df-iin 3869 . 2 𝑥𝐵 (𝐴𝑥) = {𝑦 ∣ ∀𝑥𝐵 𝑦 ∈ (𝐴𝑥)}
118, 9, 103sstr4i 3183 1 (𝐴 𝐵) ⊆ 𝑥𝐵 (𝐴𝑥)
Colors of variables: wff set class
Syntax hints:  wo 698  wcel 2136  {cab 2151  wral 2444  cun 3114  wss 3116   cint 3824   ciin 3867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-int 3825  df-iin 3869
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator