ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iinuniss GIF version

Theorem iinuniss 3787
Description: A relationship involving union and indexed intersection. Exercise 23 of [Enderton] p. 33 but with equality changed to subset. (Contributed by Jim Kingdon, 19-Aug-2018.)
Assertion
Ref Expression
iinuniss (𝐴 𝐵) ⊆ 𝑥𝐵 (𝐴𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem iinuniss
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 r19.32vr 2510 . . . 4 ((𝑦𝐴 ∨ ∀𝑥𝐵 𝑦𝑥) → ∀𝑥𝐵 (𝑦𝐴𝑦𝑥))
2 vex 2617 . . . . . 6 𝑦 ∈ V
32elint2 3672 . . . . 5 (𝑦 𝐵 ↔ ∀𝑥𝐵 𝑦𝑥)
43orbi2i 712 . . . 4 ((𝑦𝐴𝑦 𝐵) ↔ (𝑦𝐴 ∨ ∀𝑥𝐵 𝑦𝑥))
5 elun 3127 . . . . 5 (𝑦 ∈ (𝐴𝑥) ↔ (𝑦𝐴𝑦𝑥))
65ralbii 2380 . . . 4 (∀𝑥𝐵 𝑦 ∈ (𝐴𝑥) ↔ ∀𝑥𝐵 (𝑦𝐴𝑦𝑥))
71, 4, 63imtr4i 199 . . 3 ((𝑦𝐴𝑦 𝐵) → ∀𝑥𝐵 𝑦 ∈ (𝐴𝑥))
87ss2abi 3079 . 2 {𝑦 ∣ (𝑦𝐴𝑦 𝐵)} ⊆ {𝑦 ∣ ∀𝑥𝐵 𝑦 ∈ (𝐴𝑥)}
9 df-un 2990 . 2 (𝐴 𝐵) = {𝑦 ∣ (𝑦𝐴𝑦 𝐵)}
10 df-iin 3710 . 2 𝑥𝐵 (𝐴𝑥) = {𝑦 ∣ ∀𝑥𝐵 𝑦 ∈ (𝐴𝑥)}
118, 9, 103sstr4i 3051 1 (𝐴 𝐵) ⊆ 𝑥𝐵 (𝐴𝑥)
Colors of variables: wff set class
Syntax hints:  wo 662  wcel 1436  {cab 2071  wral 2355  cun 2984  wss 2986   cint 3665   ciin 3708
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067
This theorem depends on definitions:  df-bi 115  df-tru 1290  df-nf 1393  df-sb 1690  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ral 2360  df-v 2616  df-un 2990  df-in 2992  df-ss 2999  df-int 3666  df-iin 3710
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator