ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unjust GIF version

Theorem unjust 3024
Description: Soundness justification theorem for df-un 3025. (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
unjust {𝑥 ∣ (𝑥𝐴𝑥𝐵)} = {𝑦 ∣ (𝑦𝐴𝑦𝐵)}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑦,𝐴   𝑦,𝐵

Proof of Theorem unjust
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2162 . . . 4 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
2 eleq1 2162 . . . 4 (𝑥 = 𝑧 → (𝑥𝐵𝑧𝐵))
31, 2orbi12d 748 . . 3 (𝑥 = 𝑧 → ((𝑥𝐴𝑥𝐵) ↔ (𝑧𝐴𝑧𝐵)))
43cbvabv 2223 . 2 {𝑥 ∣ (𝑥𝐴𝑥𝐵)} = {𝑧 ∣ (𝑧𝐴𝑧𝐵)}
5 eleq1 2162 . . . 4 (𝑧 = 𝑦 → (𝑧𝐴𝑦𝐴))
6 eleq1 2162 . . . 4 (𝑧 = 𝑦 → (𝑧𝐵𝑦𝐵))
75, 6orbi12d 748 . . 3 (𝑧 = 𝑦 → ((𝑧𝐴𝑧𝐵) ↔ (𝑦𝐴𝑦𝐵)))
87cbvabv 2223 . 2 {𝑧 ∣ (𝑧𝐴𝑧𝐵)} = {𝑦 ∣ (𝑦𝐴𝑦𝐵)}
94, 8eqtri 2120 1 {𝑥 ∣ (𝑥𝐴𝑥𝐵)} = {𝑦 ∣ (𝑦𝐴𝑦𝐵)}
Colors of variables: wff set class
Syntax hints:  wo 670   = wceq 1299  wcel 1448  {cab 2086
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082
This theorem depends on definitions:  df-bi 116  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator