| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfrex2dc | GIF version | ||
| Description: Relationship between restricted universal and existential quantifiers. (Contributed by Jim Kingdon, 29-Jun-2022.) |
| Ref | Expression |
|---|---|
| dfrex2dc | ⊢ (DECID ∃𝑥 ∈ 𝐴 𝜑 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 2514 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | 1 | dcbii 845 | . . 3 ⊢ (DECID ∃𝑥 ∈ 𝐴 𝜑 ↔ DECID ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| 3 | dfexdc 1547 | . . 3 ⊢ (DECID ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ¬ ∀𝑥 ¬ (𝑥 ∈ 𝐴 ∧ 𝜑))) | |
| 4 | 2, 3 | sylbi 121 | . 2 ⊢ (DECID ∃𝑥 ∈ 𝐴 𝜑 → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ¬ ∀𝑥 ¬ (𝑥 ∈ 𝐴 ∧ 𝜑))) |
| 5 | df-ral 2513 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝜑)) | |
| 6 | imnan 694 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 → ¬ 𝜑) ↔ ¬ (𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 7 | 6 | albii 1516 | . . . 4 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝜑) ↔ ∀𝑥 ¬ (𝑥 ∈ 𝐴 ∧ 𝜑)) |
| 8 | 5, 7 | bitri 184 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∀𝑥 ¬ (𝑥 ∈ 𝐴 ∧ 𝜑)) |
| 9 | 8 | notbii 672 | . 2 ⊢ (¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∀𝑥 ¬ (𝑥 ∈ 𝐴 ∧ 𝜑)) |
| 10 | 4, 1, 9 | 3bitr4g 223 | 1 ⊢ (DECID ∃𝑥 ∈ 𝐴 𝜑 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 839 ∀wal 1393 ∃wex 1538 ∈ wcel 2200 ∀wral 2508 ∃wrex 2509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-gen 1495 ax-ie2 1540 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-tru 1398 df-fal 1401 df-ral 2513 df-rex 2514 |
| This theorem is referenced by: dfrex2fin 7053 exmidomniim 7296 |
| Copyright terms: Public domain | W3C validator |