![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dfrex2dc | GIF version |
Description: Relationship between restricted universal and existential quantifiers. (Contributed by Jim Kingdon, 29-Jun-2022.) |
Ref | Expression |
---|---|
dfrex2dc | ⊢ (DECID ∃𝑥 ∈ 𝐴 𝜑 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 2461 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | 1 | dcbii 840 | . . 3 ⊢ (DECID ∃𝑥 ∈ 𝐴 𝜑 ↔ DECID ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
3 | dfexdc 1501 | . . 3 ⊢ (DECID ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ¬ ∀𝑥 ¬ (𝑥 ∈ 𝐴 ∧ 𝜑))) | |
4 | 2, 3 | sylbi 121 | . 2 ⊢ (DECID ∃𝑥 ∈ 𝐴 𝜑 → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ¬ ∀𝑥 ¬ (𝑥 ∈ 𝐴 ∧ 𝜑))) |
5 | df-ral 2460 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝜑)) | |
6 | imnan 690 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 → ¬ 𝜑) ↔ ¬ (𝑥 ∈ 𝐴 ∧ 𝜑)) | |
7 | 6 | albii 1470 | . . . 4 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝜑) ↔ ∀𝑥 ¬ (𝑥 ∈ 𝐴 ∧ 𝜑)) |
8 | 5, 7 | bitri 184 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∀𝑥 ¬ (𝑥 ∈ 𝐴 ∧ 𝜑)) |
9 | 8 | notbii 668 | . 2 ⊢ (¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∀𝑥 ¬ (𝑥 ∈ 𝐴 ∧ 𝜑)) |
10 | 4, 1, 9 | 3bitr4g 223 | 1 ⊢ (DECID ∃𝑥 ∈ 𝐴 𝜑 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 834 ∀wal 1351 ∃wex 1492 ∈ wcel 2148 ∀wral 2455 ∃wrex 2456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-gen 1449 ax-ie2 1494 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-tru 1356 df-fal 1359 df-ral 2460 df-rex 2461 |
This theorem is referenced by: dfrex2fin 6903 exmidomniim 7139 |
Copyright terms: Public domain | W3C validator |