ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nex GIF version

Theorem nex 1488
Description: Generalization rule for negated wff. (Contributed by NM, 18-May-1994.)
Hypothesis
Ref Expression
nex.1 ¬ 𝜑
Assertion
Ref Expression
nex ¬ ∃𝑥𝜑

Proof of Theorem nex
StepHypRef Expression
1 alnex 1487 . 2 (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑)
2 nex.1 . 2 ¬ 𝜑
31, 2mpgbi 1440 1 ¬ ∃𝑥𝜑
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wex 1480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-5 1435  ax-gen 1437  ax-ie2 1482
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-fal 1349
This theorem is referenced by:  ru  2950  0nelxp  4632  0xp  4684  dm0  4818  co02  5117  0fv  5521  mpo0  5912  0npr  7424  0g0  12607
  Copyright terms: Public domain W3C validator