ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nex GIF version

Theorem nex 1524
Description: Generalization rule for negated wff. (Contributed by NM, 18-May-1994.)
Hypothesis
Ref Expression
nex.1 ¬ 𝜑
Assertion
Ref Expression
nex ¬ ∃𝑥𝜑

Proof of Theorem nex
StepHypRef Expression
1 alnex 1523 . 2 (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑)
2 nex.1 . 2 ¬ 𝜑
31, 2mpgbi 1476 1 ¬ ∃𝑥𝜑
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wex 1516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1471  ax-gen 1473  ax-ie2 1518
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379
This theorem is referenced by:  ru  3001  0nelxp  4711  0xp  4763  dm0  4901  co02  5205  0fv  5625  mpo0  6028  0npr  7616  0g0  13283  gsum0g  13303
  Copyright terms: Public domain W3C validator