| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nex | GIF version | ||
| Description: Generalization rule for negated wff. (Contributed by NM, 18-May-1994.) |
| Ref | Expression |
|---|---|
| nex.1 | ⊢ ¬ 𝜑 |
| Ref | Expression |
|---|---|
| nex | ⊢ ¬ ∃𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alnex 1523 | . 2 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) | |
| 2 | nex.1 | . 2 ⊢ ¬ 𝜑 | |
| 3 | 1, 2 | mpgbi 1476 | 1 ⊢ ¬ ∃𝑥𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∃wex 1516 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1471 ax-gen 1473 ax-ie2 1518 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 |
| This theorem is referenced by: ru 3001 0nelxp 4711 0xp 4763 dm0 4901 co02 5205 0fv 5625 mpo0 6028 0npr 7616 0g0 13283 gsum0g 13303 |
| Copyright terms: Public domain | W3C validator |