Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nex | GIF version |
Description: Generalization rule for negated wff. (Contributed by NM, 18-May-1994.) |
Ref | Expression |
---|---|
nex.1 | ⊢ ¬ 𝜑 |
Ref | Expression |
---|---|
nex | ⊢ ¬ ∃𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alnex 1479 | . 2 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) | |
2 | nex.1 | . 2 ⊢ ¬ 𝜑 | |
3 | 1, 2 | mpgbi 1432 | 1 ⊢ ¬ ∃𝑥𝜑 |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∃wex 1472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-5 1427 ax-gen 1429 ax-ie2 1474 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-fal 1341 |
This theorem is referenced by: ru 2936 0nelxp 4615 0xp 4667 dm0 4801 co02 5100 0fv 5504 mpo0 5892 0npr 7404 |
Copyright terms: Public domain | W3C validator |