ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nex GIF version

Theorem nex 1457
Description: Generalization rule for negated wff. (Contributed by NM, 18-May-1994.)
Hypothesis
Ref Expression
nex.1 ¬ 𝜑
Assertion
Ref Expression
nex ¬ ∃𝑥𝜑

Proof of Theorem nex
StepHypRef Expression
1 alnex 1456 . 2 (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑)
2 nex.1 . 2 ¬ 𝜑
31, 2mpgbi 1409 1 ¬ ∃𝑥𝜑
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wex 1449
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-5 1404  ax-gen 1406  ax-ie2 1451
This theorem depends on definitions:  df-bi 116  df-tru 1315  df-fal 1318
This theorem is referenced by:  ru  2875  0nelxp  4525  0xp  4577  dm0  4711  co02  5008  0fv  5408  mpo0  5793  0npr  7232
  Copyright terms: Public domain W3C validator