![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eean | GIF version |
Description: Rearrange existential quantifiers. (Contributed by NM, 27-Oct-2010.) (Revised by Mario Carneiro, 6-Oct-2016.) |
Ref | Expression |
---|---|
eean.1 | ⊢ Ⅎ𝑦𝜑 |
eean.2 | ⊢ Ⅎ𝑥𝜓 |
Ref | Expression |
---|---|
eean | ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eean.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
2 | 1 | 19.42 1688 | . . 3 ⊢ (∃𝑦(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑦𝜓)) |
3 | 2 | exbii 1605 | . 2 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜑 ∧ ∃𝑦𝜓)) |
4 | eean.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
5 | 4 | nfex 1637 | . . 3 ⊢ Ⅎ𝑥∃𝑦𝜓 |
6 | 5 | 19.41 1686 | . 2 ⊢ (∃𝑥(𝜑 ∧ ∃𝑦𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) |
7 | 3, 6 | bitri 184 | 1 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 Ⅎwnf 1460 ∃wex 1492 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-4 1510 ax-ial 1534 |
This theorem depends on definitions: df-bi 117 df-nf 1461 |
This theorem is referenced by: eeanv 1932 reean 2646 |
Copyright terms: Public domain | W3C validator |