| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eeanv | GIF version | ||
| Description: Rearrange existential quantifiers. (Contributed by NM, 26-Jul-1995.) |
| Ref | Expression |
|---|---|
| eeanv | ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1542 | . 2 ⊢ Ⅎ𝑦𝜑 | |
| 2 | nfv 1542 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 3 | 1, 2 | eean 1950 | 1 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∃wex 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 |
| This theorem is referenced by: eeeanv 1952 ee4anv 1953 2eu4 2138 cgsex2g 2799 cgsex4g 2800 vtocl2 2819 spc2egv 2854 spc2gv 2855 dtruarb 4225 copsex2t 4279 copsex2g 4280 opelopabsb 4295 xpmlem 5091 fununi 5327 imain 5341 brabvv 5972 spc2ed 6300 tfrlem7 6384 ener 6847 domtr 6853 unen 6884 mapen 6916 sbthlemi10 7041 ltexprlemdisj 7690 recexprlemdisj 7714 hashfacen 10945 summodc 11565 |
| Copyright terms: Public domain | W3C validator |