Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eeanv | GIF version |
Description: Rearrange existential quantifiers. (Contributed by NM, 26-Jul-1995.) |
Ref | Expression |
---|---|
eeanv | ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1521 | . 2 ⊢ Ⅎ𝑦𝜑 | |
2 | nfv 1521 | . 2 ⊢ Ⅎ𝑥𝜓 | |
3 | 1, 2 | eean 1924 | 1 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∃wex 1485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 df-nf 1454 |
This theorem is referenced by: eeeanv 1926 ee4anv 1927 2eu4 2112 cgsex2g 2766 cgsex4g 2767 vtocl2 2785 spc2egv 2820 spc2gv 2821 dtruarb 4177 copsex2t 4230 copsex2g 4231 opelopabsb 4245 xpmlem 5031 fununi 5266 imain 5280 brabvv 5899 spc2ed 6212 tfrlem7 6296 ener 6757 domtr 6763 unen 6794 mapen 6824 sbthlemi10 6943 ltexprlemdisj 7568 recexprlemdisj 7592 hashfacen 10771 summodc 11346 |
Copyright terms: Public domain | W3C validator |