| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eeanv | GIF version | ||
| Description: Rearrange existential quantifiers. (Contributed by NM, 26-Jul-1995.) |
| Ref | Expression |
|---|---|
| eeanv | ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1551 | . 2 ⊢ Ⅎ𝑦𝜑 | |
| 2 | nfv 1551 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 3 | 1, 2 | eean 1959 | 1 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∃wex 1515 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 |
| This theorem is referenced by: eeeanv 1961 ee4anv 1962 2eu4 2147 cgsex2g 2808 cgsex4g 2809 vtocl2 2828 spc2egv 2863 spc2gv 2864 dtruarb 4235 copsex2t 4289 copsex2g 4290 opelopabsb 4306 xpmlem 5103 fununi 5342 imain 5356 brabvv 5991 spc2ed 6319 tfrlem7 6403 ener 6871 domtr 6877 unen 6908 mapen 6943 sbthlemi10 7068 ltexprlemdisj 7719 recexprlemdisj 7743 hashfacen 10981 summodc 11694 |
| Copyright terms: Public domain | W3C validator |