| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eeanv | GIF version | ||
| Description: Rearrange existential quantifiers. (Contributed by NM, 26-Jul-1995.) |
| Ref | Expression |
|---|---|
| eeanv | ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1550 | . 2 ⊢ Ⅎ𝑦𝜑 | |
| 2 | nfv 1550 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 3 | 1, 2 | eean 1958 | 1 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∃wex 1514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 ax-17 1548 ax-ial 1556 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 |
| This theorem is referenced by: eeeanv 1960 ee4anv 1961 2eu4 2146 cgsex2g 2807 cgsex4g 2808 vtocl2 2827 spc2egv 2862 spc2gv 2863 dtruarb 4234 copsex2t 4288 copsex2g 4289 opelopabsb 4305 xpmlem 5102 fununi 5341 imain 5355 brabvv 5990 spc2ed 6318 tfrlem7 6402 ener 6870 domtr 6876 unen 6907 mapen 6942 sbthlemi10 7067 ltexprlemdisj 7718 recexprlemdisj 7742 hashfacen 10979 summodc 11636 |
| Copyright terms: Public domain | W3C validator |