| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eeanv | GIF version | ||
| Description: Rearrange existential quantifiers. (Contributed by NM, 26-Jul-1995.) |
| Ref | Expression |
|---|---|
| eeanv | ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1552 | . 2 ⊢ Ⅎ𝑦𝜑 | |
| 2 | nfv 1552 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 3 | 1, 2 | eean 1960 | 1 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∃wex 1516 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 |
| This theorem is referenced by: eeeanv 1962 ee4anv 1963 2eu4 2148 cgsex2g 2810 cgsex4g 2811 vtocl2 2830 spc2egv 2867 spc2gv 2868 dtruarb 4246 copsex2t 4302 copsex2g 4303 opelopabsb 4319 xpmlem 5117 fununi 5356 imain 5370 brabvv 6009 spc2ed 6337 tfrlem7 6421 ener 6889 domtr 6895 unen 6927 mapen 6963 sbthlemi10 7089 ltexprlemdisj 7749 recexprlemdisj 7773 hashfacen 11013 summodc 11779 |
| Copyright terms: Public domain | W3C validator |