| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eeanv | GIF version | ||
| Description: Rearrange existential quantifiers. (Contributed by NM, 26-Jul-1995.) |
| Ref | Expression |
|---|---|
| eeanv | ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1574 | . 2 ⊢ Ⅎ𝑦𝜑 | |
| 2 | nfv 1574 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 3 | 1, 2 | eean 1982 | 1 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∃wex 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 |
| This theorem is referenced by: eeeanv 1984 ee4anv 1985 2eu4 2171 cgsex2g 2836 cgsex4g 2837 vtocl2 2856 spc2egv 2893 spc2gv 2894 dtruarb 4274 copsex2t 4330 copsex2g 4331 opelopabsb 4347 xpmlem 5148 fununi 5388 imain 5402 brabvv 6049 spc2ed 6377 tfrlem7 6461 ener 6929 domtr 6935 unen 6967 mapen 7003 sbthlemi10 7129 ltexprlemdisj 7789 recexprlemdisj 7813 hashfacen 11053 summodc 11889 |
| Copyright terms: Public domain | W3C validator |