![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eeanv | GIF version |
Description: Rearrange existential quantifiers. (Contributed by NM, 26-Jul-1995.) |
Ref | Expression |
---|---|
eeanv | ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1539 | . 2 ⊢ Ⅎ𝑦𝜑 | |
2 | nfv 1539 | . 2 ⊢ Ⅎ𝑥𝜓 | |
3 | 1, 2 | eean 1947 | 1 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 ∃wex 1503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 |
This theorem depends on definitions: df-bi 117 df-nf 1472 |
This theorem is referenced by: eeeanv 1949 ee4anv 1950 2eu4 2135 cgsex2g 2796 cgsex4g 2797 vtocl2 2815 spc2egv 2850 spc2gv 2851 dtruarb 4220 copsex2t 4274 copsex2g 4275 opelopabsb 4290 xpmlem 5086 fununi 5322 imain 5336 brabvv 5964 spc2ed 6286 tfrlem7 6370 ener 6833 domtr 6839 unen 6870 mapen 6902 sbthlemi10 7025 ltexprlemdisj 7666 recexprlemdisj 7690 hashfacen 10907 summodc 11526 |
Copyright terms: Public domain | W3C validator |