![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eeanv | GIF version |
Description: Rearrange existential quantifiers. (Contributed by NM, 26-Jul-1995.) |
Ref | Expression |
---|---|
eeanv | ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1539 | . 2 ⊢ Ⅎ𝑦𝜑 | |
2 | nfv 1539 | . 2 ⊢ Ⅎ𝑥𝜓 | |
3 | 1, 2 | eean 1947 | 1 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 ∃wex 1503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 |
This theorem depends on definitions: df-bi 117 df-nf 1472 |
This theorem is referenced by: eeeanv 1949 ee4anv 1950 2eu4 2135 cgsex2g 2796 cgsex4g 2797 vtocl2 2816 spc2egv 2851 spc2gv 2852 dtruarb 4221 copsex2t 4275 copsex2g 4276 opelopabsb 4291 xpmlem 5087 fununi 5323 imain 5337 brabvv 5965 spc2ed 6288 tfrlem7 6372 ener 6835 domtr 6841 unen 6872 mapen 6904 sbthlemi10 7027 ltexprlemdisj 7668 recexprlemdisj 7692 hashfacen 10910 summodc 11529 |
Copyright terms: Public domain | W3C validator |