![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eeanv | GIF version |
Description: Rearrange existential quantifiers. (Contributed by NM, 26-Jul-1995.) |
Ref | Expression |
---|---|
eeanv | ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1528 | . 2 ⊢ Ⅎ𝑦𝜑 | |
2 | nfv 1528 | . 2 ⊢ Ⅎ𝑥𝜓 | |
3 | 1, 2 | eean 1931 | 1 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 ∃wex 1492 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-4 1510 ax-17 1526 ax-ial 1534 |
This theorem depends on definitions: df-bi 117 df-nf 1461 |
This theorem is referenced by: eeeanv 1933 ee4anv 1934 2eu4 2119 cgsex2g 2775 cgsex4g 2776 vtocl2 2794 spc2egv 2829 spc2gv 2830 dtruarb 4193 copsex2t 4247 copsex2g 4248 opelopabsb 4262 xpmlem 5051 fununi 5286 imain 5300 brabvv 5924 spc2ed 6237 tfrlem7 6321 ener 6782 domtr 6788 unen 6819 mapen 6849 sbthlemi10 6968 ltexprlemdisj 7608 recexprlemdisj 7632 hashfacen 10819 summodc 11394 |
Copyright terms: Public domain | W3C validator |