ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mtbid GIF version

Theorem mtbid 672
Description: A deduction from a biconditional, similar to modus tollens. (Contributed by NM, 26-Nov-1995.)
Hypotheses
Ref Expression
mtbid.min (𝜑 → ¬ 𝜓)
mtbid.maj (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
mtbid (𝜑 → ¬ 𝜒)

Proof of Theorem mtbid
StepHypRef Expression
1 mtbid.min . 2 (𝜑 → ¬ 𝜓)
2 mtbid.maj . . 3 (𝜑 → (𝜓𝜒))
32biimprd 158 . 2 (𝜑 → (𝜒𝜓))
41, 3mtod 663 1 (𝜑 → ¬ 𝜒)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  sylnib  676  eqneltrrd  2274  neleqtrd  2275  eueq3dc  2911  efrirr  4353  fidcenumlemrks  6951  nqnq0pi  7436  zdclt  9329  xleaddadd  9886  frec2uzf1od  10405  expnegap0  10527  bcval5  10742  zfz1isolemiso  10818  seq3coll  10821  fisumss  11399  fprodssdc  11597  rpdvds  12098  oddpwdclemodd  12171  pceq0  12320  pcmpt  12340  lgseisenlem1  14420  2sqlem8a  14439  2sqlem8  14440  pwle2  14718
  Copyright terms: Public domain W3C validator