ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mtbid GIF version

Theorem mtbid 674
Description: A deduction from a biconditional, similar to modus tollens. (Contributed by NM, 26-Nov-1995.)
Hypotheses
Ref Expression
mtbid.min (𝜑 → ¬ 𝜓)
mtbid.maj (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
mtbid (𝜑 → ¬ 𝜒)

Proof of Theorem mtbid
StepHypRef Expression
1 mtbid.min . 2 (𝜑 → ¬ 𝜓)
2 mtbid.maj . . 3 (𝜑 → (𝜓𝜒))
32biimprd 158 . 2 (𝜑 → (𝜒𝜓))
41, 3mtod 665 1 (𝜑 → ¬ 𝜒)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  sylnib  678  eqneltrrd  2302  neleqtrd  2303  eueq3dc  2947  efrirr  4400  fidcenumlemrks  7055  nqnq0pi  7551  zdclt  9450  xleaddadd  10009  qdclt  10388  frec2uzf1od  10551  expnegap0  10692  bcval5  10908  zfz1isolemiso  10984  seq3coll  10987  fisumss  11703  fprodssdc  11901  nninfctlemfo  12361  rpdvds  12421  oddpwdclemodd  12494  pceq0  12645  pcmpt  12666  gsumfzval  13223  ply1termlem  15214  lgseisenlem1  15547  lgsquadlem3  15556  2sqlem8a  15599  2sqlem8  15600  2omap  15932  pwle2  15935
  Copyright terms: Public domain W3C validator