![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mtbid | GIF version |
Description: A deduction from a biconditional, similar to modus tollens. (Contributed by NM, 26-Nov-1995.) |
Ref | Expression |
---|---|
mtbid.min | ⊢ (𝜑 → ¬ 𝜓) |
mtbid.maj | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
mtbid | ⊢ (𝜑 → ¬ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtbid.min | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
2 | mtbid.maj | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 2 | biimprd 158 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
4 | 1, 3 | mtod 663 | 1 ⊢ (𝜑 → ¬ 𝜒) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: sylnib 676 eqneltrrd 2274 neleqtrd 2275 eueq3dc 2912 efrirr 4354 fidcenumlemrks 6952 nqnq0pi 7437 zdclt 9330 xleaddadd 9887 frec2uzf1od 10406 expnegap0 10528 bcval5 10743 zfz1isolemiso 10819 seq3coll 10822 fisumss 11400 fprodssdc 11598 rpdvds 12099 oddpwdclemodd 12172 pceq0 12321 pcmpt 12341 lgseisenlem1 14453 2sqlem8a 14472 2sqlem8 14473 pwle2 14751 |
Copyright terms: Public domain | W3C validator |