| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mtbid | GIF version | ||
| Description: A deduction from a biconditional, similar to modus tollens. (Contributed by NM, 26-Nov-1995.) |
| Ref | Expression |
|---|---|
| mtbid.min | ⊢ (𝜑 → ¬ 𝜓) |
| mtbid.maj | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| mtbid | ⊢ (𝜑 → ¬ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtbid.min | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | mtbid.maj | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | biimprd 158 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
| 4 | 1, 3 | mtod 665 | 1 ⊢ (𝜑 → ¬ 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: sylnib 678 eqneltrrd 2302 neleqtrd 2303 eueq3dc 2947 efrirr 4400 fidcenumlemrks 7055 nqnq0pi 7551 zdclt 9450 xleaddadd 10009 qdclt 10388 frec2uzf1od 10551 expnegap0 10692 bcval5 10908 zfz1isolemiso 10984 seq3coll 10987 fisumss 11703 fprodssdc 11901 nninfctlemfo 12361 rpdvds 12421 oddpwdclemodd 12494 pceq0 12645 pcmpt 12666 gsumfzval 13223 ply1termlem 15214 lgseisenlem1 15547 lgsquadlem3 15556 2sqlem8a 15599 2sqlem8 15600 2omap 15932 pwle2 15935 |
| Copyright terms: Public domain | W3C validator |