Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mtbid | GIF version |
Description: A deduction from a biconditional, similar to modus tollens. (Contributed by NM, 26-Nov-1995.) |
Ref | Expression |
---|---|
mtbid.min | ⊢ (𝜑 → ¬ 𝜓) |
mtbid.maj | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
mtbid | ⊢ (𝜑 → ¬ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtbid.min | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
2 | mtbid.maj | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 2 | biimprd 157 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
4 | 1, 3 | mtod 653 | 1 ⊢ (𝜑 → ¬ 𝜒) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: sylnib 666 eqneltrrd 2262 neleqtrd 2263 eueq3dc 2899 efrirr 4330 fidcenumlemrks 6914 nqnq0pi 7375 zdclt 9264 xleaddadd 9819 frec2uzf1od 10337 expnegap0 10459 bcval5 10672 zfz1isolemiso 10748 seq3coll 10751 fisumss 11329 fprodssdc 11527 rpdvds 12027 oddpwdclemodd 12100 pceq0 12249 pcmpt 12269 2sqlem8a 13558 2sqlem8 13559 pwle2 13838 |
Copyright terms: Public domain | W3C validator |