ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mtbid GIF version

Theorem mtbid 667
Description: A deduction from a biconditional, similar to modus tollens. (Contributed by NM, 26-Nov-1995.)
Hypotheses
Ref Expression
mtbid.min (𝜑 → ¬ 𝜓)
mtbid.maj (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
mtbid (𝜑 → ¬ 𝜒)

Proof of Theorem mtbid
StepHypRef Expression
1 mtbid.min . 2 (𝜑 → ¬ 𝜓)
2 mtbid.maj . . 3 (𝜑 → (𝜓𝜒))
32biimprd 157 . 2 (𝜑 → (𝜒𝜓))
41, 3mtod 658 1 (𝜑 → ¬ 𝜒)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  sylnib  671  eqneltrrd  2267  neleqtrd  2268  eueq3dc  2904  efrirr  4336  fidcenumlemrks  6927  nqnq0pi  7389  zdclt  9278  xleaddadd  9833  frec2uzf1od  10351  expnegap0  10473  bcval5  10686  zfz1isolemiso  10763  seq3coll  10766  fisumss  11344  fprodssdc  11542  rpdvds  12042  oddpwdclemodd  12115  pceq0  12264  pcmpt  12284  2sqlem8a  13713  2sqlem8  13714  pwle2  13993
  Copyright terms: Public domain W3C validator