Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mtbid | GIF version |
Description: A deduction from a biconditional, similar to modus tollens. (Contributed by NM, 26-Nov-1995.) |
Ref | Expression |
---|---|
mtbid.min | ⊢ (𝜑 → ¬ 𝜓) |
mtbid.maj | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
mtbid | ⊢ (𝜑 → ¬ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtbid.min | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
2 | mtbid.maj | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 2 | biimprd 157 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
4 | 1, 3 | mtod 658 | 1 ⊢ (𝜑 → ¬ 𝜒) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: sylnib 671 eqneltrrd 2267 neleqtrd 2268 eueq3dc 2904 efrirr 4336 fidcenumlemrks 6927 nqnq0pi 7389 zdclt 9278 xleaddadd 9833 frec2uzf1od 10351 expnegap0 10473 bcval5 10686 zfz1isolemiso 10763 seq3coll 10766 fisumss 11344 fprodssdc 11542 rpdvds 12042 oddpwdclemodd 12115 pceq0 12264 pcmpt 12284 2sqlem8a 13713 2sqlem8 13714 pwle2 13993 |
Copyright terms: Public domain | W3C validator |