| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mtbid | GIF version | ||
| Description: A deduction from a biconditional, similar to modus tollens. (Contributed by NM, 26-Nov-1995.) |
| Ref | Expression |
|---|---|
| mtbid.min | ⊢ (𝜑 → ¬ 𝜓) |
| mtbid.maj | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| mtbid | ⊢ (𝜑 → ¬ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtbid.min | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | mtbid.maj | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | biimprd 158 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
| 4 | 1, 3 | mtod 664 | 1 ⊢ (𝜑 → ¬ 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: sylnib 677 eqneltrrd 2293 neleqtrd 2294 eueq3dc 2938 efrirr 4389 fidcenumlemrks 7023 nqnq0pi 7510 zdclt 9408 xleaddadd 9967 qdclt 10340 frec2uzf1od 10503 expnegap0 10644 bcval5 10860 zfz1isolemiso 10936 seq3coll 10939 fisumss 11562 fprodssdc 11760 nninfctlemfo 12220 rpdvds 12280 oddpwdclemodd 12353 pceq0 12504 pcmpt 12525 gsumfzval 13081 ply1termlem 15025 lgseisenlem1 15358 lgsquadlem3 15367 2sqlem8a 15410 2sqlem8 15411 2omap 15689 pwle2 15692 |
| Copyright terms: Public domain | W3C validator |