| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mtbid | GIF version | ||
| Description: A deduction from a biconditional, similar to modus tollens. (Contributed by NM, 26-Nov-1995.) |
| Ref | Expression |
|---|---|
| mtbid.min | ⊢ (𝜑 → ¬ 𝜓) |
| mtbid.maj | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| mtbid | ⊢ (𝜑 → ¬ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtbid.min | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | mtbid.maj | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | biimprd 158 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
| 4 | 1, 3 | mtod 664 | 1 ⊢ (𝜑 → ¬ 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: sylnib 677 eqneltrrd 2293 neleqtrd 2294 eueq3dc 2938 efrirr 4389 fidcenumlemrks 7028 nqnq0pi 7522 zdclt 9420 xleaddadd 9979 qdclt 10352 frec2uzf1od 10515 expnegap0 10656 bcval5 10872 zfz1isolemiso 10948 seq3coll 10951 fisumss 11574 fprodssdc 11772 nninfctlemfo 12232 rpdvds 12292 oddpwdclemodd 12365 pceq0 12516 pcmpt 12537 gsumfzval 13093 ply1termlem 15062 lgseisenlem1 15395 lgsquadlem3 15404 2sqlem8a 15447 2sqlem8 15448 2omap 15726 pwle2 15729 |
| Copyright terms: Public domain | W3C validator |