| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mtbid | GIF version | ||
| Description: A deduction from a biconditional, similar to modus tollens. (Contributed by NM, 26-Nov-1995.) |
| Ref | Expression |
|---|---|
| mtbid.min | ⊢ (𝜑 → ¬ 𝜓) |
| mtbid.maj | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| mtbid | ⊢ (𝜑 → ¬ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtbid.min | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | mtbid.maj | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | biimprd 158 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
| 4 | 1, 3 | mtod 665 | 1 ⊢ (𝜑 → ¬ 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: sylnib 678 eqneltrrd 2302 neleqtrd 2303 eueq3dc 2947 efrirr 4401 fidcenumlemrks 7057 nqnq0pi 7553 zdclt 9452 xleaddadd 10011 qdclt 10390 frec2uzf1od 10553 expnegap0 10694 bcval5 10910 zfz1isolemiso 10986 seq3coll 10989 fisumss 11736 fprodssdc 11934 nninfctlemfo 12394 rpdvds 12454 oddpwdclemodd 12527 pceq0 12678 pcmpt 12699 gsumfzval 13256 ply1termlem 15247 lgseisenlem1 15580 lgsquadlem3 15589 2sqlem8a 15632 2sqlem8 15633 2omap 15969 pwle2 15972 |
| Copyright terms: Public domain | W3C validator |