Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mtbid | GIF version |
Description: A deduction from a biconditional, similar to modus tollens. (Contributed by NM, 26-Nov-1995.) |
Ref | Expression |
---|---|
mtbid.min | ⊢ (𝜑 → ¬ 𝜓) |
mtbid.maj | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
mtbid | ⊢ (𝜑 → ¬ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtbid.min | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
2 | mtbid.maj | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 2 | biimprd 157 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
4 | 1, 3 | mtod 658 | 1 ⊢ (𝜑 → ¬ 𝜒) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: sylnib 671 eqneltrrd 2267 neleqtrd 2268 eueq3dc 2904 efrirr 4338 fidcenumlemrks 6930 nqnq0pi 7400 zdclt 9289 xleaddadd 9844 frec2uzf1od 10362 expnegap0 10484 bcval5 10697 zfz1isolemiso 10774 seq3coll 10777 fisumss 11355 fprodssdc 11553 rpdvds 12053 oddpwdclemodd 12126 pceq0 12275 pcmpt 12295 2sqlem8a 13752 2sqlem8 13753 pwle2 14031 |
Copyright terms: Public domain | W3C validator |