| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mtbid | GIF version | ||
| Description: A deduction from a biconditional, similar to modus tollens. (Contributed by NM, 26-Nov-1995.) |
| Ref | Expression |
|---|---|
| mtbid.min | ⊢ (𝜑 → ¬ 𝜓) |
| mtbid.maj | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| mtbid | ⊢ (𝜑 → ¬ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtbid.min | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | mtbid.maj | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | biimprd 158 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
| 4 | 1, 3 | mtod 667 | 1 ⊢ (𝜑 → ¬ 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: sylnib 680 eqneltrrd 2326 neleqtrd 2327 eueq3dc 2977 efrirr 4444 fidcenumlemrks 7120 nqnq0pi 7625 zdclt 9524 xleaddadd 10083 qdclt 10465 frec2uzf1od 10628 expnegap0 10769 bcval5 10985 zfz1isolemiso 11061 seq3coll 11064 fisumss 11903 fprodssdc 12101 nninfctlemfo 12561 rpdvds 12621 oddpwdclemodd 12694 pceq0 12845 pcmpt 12866 gsumfzval 13424 ply1termlem 15416 lgseisenlem1 15749 lgsquadlem3 15758 2sqlem8a 15801 2sqlem8 15802 2omap 16359 pwle2 16364 |
| Copyright terms: Public domain | W3C validator |