| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mtbid | GIF version | ||
| Description: A deduction from a biconditional, similar to modus tollens. (Contributed by NM, 26-Nov-1995.) |
| Ref | Expression |
|---|---|
| mtbid.min | ⊢ (𝜑 → ¬ 𝜓) |
| mtbid.maj | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| mtbid | ⊢ (𝜑 → ¬ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtbid.min | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | mtbid.maj | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | biimprd 158 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
| 4 | 1, 3 | mtod 665 | 1 ⊢ (𝜑 → ¬ 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: sylnib 678 eqneltrrd 2304 neleqtrd 2305 eueq3dc 2954 efrirr 4418 fidcenumlemrks 7081 nqnq0pi 7586 zdclt 9485 xleaddadd 10044 qdclt 10425 frec2uzf1od 10588 expnegap0 10729 bcval5 10945 zfz1isolemiso 11021 seq3coll 11024 fisumss 11818 fprodssdc 12016 nninfctlemfo 12476 rpdvds 12536 oddpwdclemodd 12609 pceq0 12760 pcmpt 12781 gsumfzval 13338 ply1termlem 15329 lgseisenlem1 15662 lgsquadlem3 15671 2sqlem8a 15714 2sqlem8 15715 2omap 16132 pwle2 16137 |
| Copyright terms: Public domain | W3C validator |