![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mtbid | GIF version |
Description: A deduction from a biconditional, similar to modus tollens. (Contributed by NM, 26-Nov-1995.) |
Ref | Expression |
---|---|
mtbid.min | ⊢ (𝜑 → ¬ 𝜓) |
mtbid.maj | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
mtbid | ⊢ (𝜑 → ¬ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtbid.min | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
2 | mtbid.maj | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 2 | biimprd 158 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
4 | 1, 3 | mtod 663 | 1 ⊢ (𝜑 → ¬ 𝜒) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: sylnib 676 eqneltrrd 2274 neleqtrd 2275 eueq3dc 2911 efrirr 4353 fidcenumlemrks 6951 nqnq0pi 7436 zdclt 9329 xleaddadd 9886 frec2uzf1od 10405 expnegap0 10527 bcval5 10742 zfz1isolemiso 10818 seq3coll 10821 fisumss 11399 fprodssdc 11597 rpdvds 12098 oddpwdclemodd 12171 pceq0 12320 pcmpt 12340 lgseisenlem1 14420 2sqlem8a 14439 2sqlem8 14440 pwle2 14718 |
Copyright terms: Public domain | W3C validator |