ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mtbid GIF version

Theorem mtbid 673
Description: A deduction from a biconditional, similar to modus tollens. (Contributed by NM, 26-Nov-1995.)
Hypotheses
Ref Expression
mtbid.min (𝜑 → ¬ 𝜓)
mtbid.maj (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
mtbid (𝜑 → ¬ 𝜒)

Proof of Theorem mtbid
StepHypRef Expression
1 mtbid.min . 2 (𝜑 → ¬ 𝜓)
2 mtbid.maj . . 3 (𝜑 → (𝜓𝜒))
32biimprd 158 . 2 (𝜑 → (𝜒𝜓))
41, 3mtod 664 1 (𝜑 → ¬ 𝜒)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  sylnib  677  eqneltrrd  2293  neleqtrd  2294  eueq3dc  2938  efrirr  4389  fidcenumlemrks  7028  nqnq0pi  7522  zdclt  9420  xleaddadd  9979  qdclt  10352  frec2uzf1od  10515  expnegap0  10656  bcval5  10872  zfz1isolemiso  10948  seq3coll  10951  fisumss  11574  fprodssdc  11772  nninfctlemfo  12232  rpdvds  12292  oddpwdclemodd  12365  pceq0  12516  pcmpt  12537  gsumfzval  13093  ply1termlem  15062  lgseisenlem1  15395  lgsquadlem3  15404  2sqlem8a  15447  2sqlem8  15448  2omap  15726  pwle2  15729
  Copyright terms: Public domain W3C validator