ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mtbid GIF version

Theorem mtbid 662
Description: A deduction from a biconditional, similar to modus tollens. (Contributed by NM, 26-Nov-1995.)
Hypotheses
Ref Expression
mtbid.min (𝜑 → ¬ 𝜓)
mtbid.maj (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
mtbid (𝜑 → ¬ 𝜒)

Proof of Theorem mtbid
StepHypRef Expression
1 mtbid.min . 2 (𝜑 → ¬ 𝜓)
2 mtbid.maj . . 3 (𝜑 → (𝜓𝜒))
32biimprd 157 . 2 (𝜑 → (𝜒𝜓))
41, 3mtod 653 1 (𝜑 → ¬ 𝜒)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  sylnib  666  eqneltrrd  2262  neleqtrd  2263  eueq3dc  2899  efrirr  4330  fidcenumlemrks  6914  nqnq0pi  7375  zdclt  9264  xleaddadd  9819  frec2uzf1od  10337  expnegap0  10459  bcval5  10672  zfz1isolemiso  10748  seq3coll  10751  fisumss  11329  fprodssdc  11527  rpdvds  12027  oddpwdclemodd  12100  pceq0  12249  pcmpt  12269  2sqlem8a  13558  2sqlem8  13559  pwle2  13838
  Copyright terms: Public domain W3C validator