| Step | Hyp | Ref
| Expression |
| 1 | | simplr 528 |
. . . . . . 7
⊢
(((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ 𝑅) → 𝑅 TAp 𝐴) |
| 2 | | simpr 110 |
. . . . . . 7
⊢
(((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ 𝑅) → 𝑝 ∈ 𝑅) |
| 3 | | dftap2 7334 |
. . . . . . . . . 10
⊢ (𝑅 TAp 𝐴 ↔ (𝑅 ⊆ (𝐴 × 𝐴) ∧ (∀𝑥 ∈ 𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → 𝑦𝑅𝑥)) ∧ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑦𝑅𝑧)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (¬ 𝑥𝑅𝑦 → 𝑥 = 𝑦)))) |
| 4 | 3 | biimpi 120 |
. . . . . . . . 9
⊢ (𝑅 TAp 𝐴 → (𝑅 ⊆ (𝐴 × 𝐴) ∧ (∀𝑥 ∈ 𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → 𝑦𝑅𝑥)) ∧ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑦𝑅𝑧)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (¬ 𝑥𝑅𝑦 → 𝑥 = 𝑦)))) |
| 5 | 4 | simp1d 1011 |
. . . . . . . 8
⊢ (𝑅 TAp 𝐴 → 𝑅 ⊆ (𝐴 × 𝐴)) |
| 6 | 5 | sseld 3183 |
. . . . . . 7
⊢ (𝑅 TAp 𝐴 → (𝑝 ∈ 𝑅 → 𝑝 ∈ (𝐴 × 𝐴))) |
| 7 | 1, 2, 6 | sylc 62 |
. . . . . 6
⊢
(((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ 𝑅) → 𝑝 ∈ (𝐴 × 𝐴)) |
| 8 | | 1st2nd2 6242 |
. . . . . 6
⊢ (𝑝 ∈ (𝐴 × 𝐴) → 𝑝 = 〈(1st ‘𝑝), (2nd ‘𝑝)〉) |
| 9 | 7, 8 | syl 14 |
. . . . 5
⊢
(((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ 𝑅) → 𝑝 = 〈(1st ‘𝑝), (2nd ‘𝑝)〉) |
| 10 | | xp1st 6232 |
. . . . . . . 8
⊢ (𝑝 ∈ (𝐴 × 𝐴) → (1st ‘𝑝) ∈ 𝐴) |
| 11 | 7, 10 | syl 14 |
. . . . . . 7
⊢
(((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ 𝑅) → (1st ‘𝑝) ∈ 𝐴) |
| 12 | | xp2nd 6233 |
. . . . . . . 8
⊢ (𝑝 ∈ (𝐴 × 𝐴) → (2nd ‘𝑝) ∈ 𝐴) |
| 13 | 7, 12 | syl 14 |
. . . . . . 7
⊢
(((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ 𝑅) → (2nd ‘𝑝) ∈ 𝐴) |
| 14 | 9, 2 | eqeltrrd 2274 |
. . . . . . . . . 10
⊢
(((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ 𝑅) → 〈(1st ‘𝑝), (2nd ‘𝑝)〉 ∈ 𝑅) |
| 15 | 14 | adantr 276 |
. . . . . . . . 9
⊢
((((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ 𝑅) ∧ (1st ‘𝑝) = (2nd ‘𝑝)) → 〈(1st
‘𝑝), (2nd
‘𝑝)〉 ∈
𝑅) |
| 16 | | simpr 110 |
. . . . . . . . . . 11
⊢
((((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ 𝑅) ∧ (1st ‘𝑝) = (2nd ‘𝑝)) → (1st
‘𝑝) = (2nd
‘𝑝)) |
| 17 | 16 | opeq2d 3816 |
. . . . . . . . . 10
⊢
((((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ 𝑅) ∧ (1st ‘𝑝) = (2nd ‘𝑝)) → 〈(1st
‘𝑝), (1st
‘𝑝)〉 =
〈(1st ‘𝑝), (2nd ‘𝑝)〉) |
| 18 | | id 19 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (1st ‘𝑝) → 𝑥 = (1st ‘𝑝)) |
| 19 | 18, 18 | breq12d 4047 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (1st ‘𝑝) → (𝑥𝑅𝑥 ↔ (1st ‘𝑝)𝑅(1st ‘𝑝))) |
| 20 | 19 | notbid 668 |
. . . . . . . . . . . 12
⊢ (𝑥 = (1st ‘𝑝) → (¬ 𝑥𝑅𝑥 ↔ ¬ (1st ‘𝑝)𝑅(1st ‘𝑝))) |
| 21 | 4 | simp2d 1012 |
. . . . . . . . . . . . . 14
⊢ (𝑅 TAp 𝐴 → (∀𝑥 ∈ 𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → 𝑦𝑅𝑥))) |
| 22 | 21 | simpld 112 |
. . . . . . . . . . . . 13
⊢ (𝑅 TAp 𝐴 → ∀𝑥 ∈ 𝐴 ¬ 𝑥𝑅𝑥) |
| 23 | 22 | ad3antlr 493 |
. . . . . . . . . . . 12
⊢
((((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ 𝑅) ∧ (1st ‘𝑝) = (2nd ‘𝑝)) → ∀𝑥 ∈ 𝐴 ¬ 𝑥𝑅𝑥) |
| 24 | 11 | adantr 276 |
. . . . . . . . . . . 12
⊢
((((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ 𝑅) ∧ (1st ‘𝑝) = (2nd ‘𝑝)) → (1st
‘𝑝) ∈ 𝐴) |
| 25 | 20, 23, 24 | rspcdva 2873 |
. . . . . . . . . . 11
⊢
((((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ 𝑅) ∧ (1st ‘𝑝) = (2nd ‘𝑝)) → ¬ (1st
‘𝑝)𝑅(1st ‘𝑝)) |
| 26 | | df-br 4035 |
. . . . . . . . . . 11
⊢
((1st ‘𝑝)𝑅(1st ‘𝑝) ↔ 〈(1st ‘𝑝), (1st ‘𝑝)〉 ∈ 𝑅) |
| 27 | 25, 26 | sylnib 677 |
. . . . . . . . . 10
⊢
((((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ 𝑅) ∧ (1st ‘𝑝) = (2nd ‘𝑝)) → ¬
〈(1st ‘𝑝), (1st ‘𝑝)〉 ∈ 𝑅) |
| 28 | 17, 27 | eqneltrrd 2293 |
. . . . . . . . 9
⊢
((((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ 𝑅) ∧ (1st ‘𝑝) = (2nd ‘𝑝)) → ¬
〈(1st ‘𝑝), (2nd ‘𝑝)〉 ∈ 𝑅) |
| 29 | 15, 28 | pm2.65da 662 |
. . . . . . . 8
⊢
(((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ 𝑅) → ¬ (1st ‘𝑝) = (2nd ‘𝑝)) |
| 30 | 29 | neqned 2374 |
. . . . . . 7
⊢
(((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ 𝑅) → (1st ‘𝑝) ≠ (2nd
‘𝑝)) |
| 31 | 11, 13, 30 | jca31 309 |
. . . . . 6
⊢
(((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ 𝑅) → (((1st ‘𝑝) ∈ 𝐴 ∧ (2nd ‘𝑝) ∈ 𝐴) ∧ (1st ‘𝑝) ≠ (2nd
‘𝑝))) |
| 32 | | eleq1 2259 |
. . . . . . . . . 10
⊢ (𝑢 = (1st ‘𝑝) → (𝑢 ∈ 𝐴 ↔ (1st ‘𝑝) ∈ 𝐴)) |
| 33 | | eleq1 2259 |
. . . . . . . . . 10
⊢ (𝑣 = (2nd ‘𝑝) → (𝑣 ∈ 𝐴 ↔ (2nd ‘𝑝) ∈ 𝐴)) |
| 34 | 32, 33 | bi2anan9 606 |
. . . . . . . . 9
⊢ ((𝑢 = (1st ‘𝑝) ∧ 𝑣 = (2nd ‘𝑝)) → ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ↔ ((1st ‘𝑝) ∈ 𝐴 ∧ (2nd ‘𝑝) ∈ 𝐴))) |
| 35 | | simpl 109 |
. . . . . . . . . 10
⊢ ((𝑢 = (1st ‘𝑝) ∧ 𝑣 = (2nd ‘𝑝)) → 𝑢 = (1st ‘𝑝)) |
| 36 | | simpr 110 |
. . . . . . . . . 10
⊢ ((𝑢 = (1st ‘𝑝) ∧ 𝑣 = (2nd ‘𝑝)) → 𝑣 = (2nd ‘𝑝)) |
| 37 | 35, 36 | neeq12d 2387 |
. . . . . . . . 9
⊢ ((𝑢 = (1st ‘𝑝) ∧ 𝑣 = (2nd ‘𝑝)) → (𝑢 ≠ 𝑣 ↔ (1st ‘𝑝) ≠ (2nd
‘𝑝))) |
| 38 | 34, 37 | anbi12d 473 |
. . . . . . . 8
⊢ ((𝑢 = (1st ‘𝑝) ∧ 𝑣 = (2nd ‘𝑝)) → (((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣) ↔ (((1st ‘𝑝) ∈ 𝐴 ∧ (2nd ‘𝑝) ∈ 𝐴) ∧ (1st ‘𝑝) ≠ (2nd
‘𝑝)))) |
| 39 | 38 | opelopabga 4298 |
. . . . . . 7
⊢
(((1st ‘𝑝) ∈ 𝐴 ∧ (2nd ‘𝑝) ∈ 𝐴) → (〈(1st ‘𝑝), (2nd ‘𝑝)〉 ∈ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)} ↔ (((1st ‘𝑝) ∈ 𝐴 ∧ (2nd ‘𝑝) ∈ 𝐴) ∧ (1st ‘𝑝) ≠ (2nd
‘𝑝)))) |
| 40 | 11, 13, 39 | syl2anc 411 |
. . . . . 6
⊢
(((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ 𝑅) → (〈(1st ‘𝑝), (2nd ‘𝑝)〉 ∈ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)} ↔ (((1st ‘𝑝) ∈ 𝐴 ∧ (2nd ‘𝑝) ∈ 𝐴) ∧ (1st ‘𝑝) ≠ (2nd
‘𝑝)))) |
| 41 | 31, 40 | mpbird 167 |
. . . . 5
⊢
(((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ 𝑅) → 〈(1st ‘𝑝), (2nd ‘𝑝)〉 ∈ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)}) |
| 42 | 9, 41 | eqeltrd 2273 |
. . . 4
⊢
(((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ 𝑅) → 𝑝 ∈ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)}) |
| 43 | | relopab 4793 |
. . . . . . 7
⊢ Rel
{〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)} |
| 44 | | 1st2nd 6248 |
. . . . . . 7
⊢ ((Rel
{〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)} ∧ 𝑝 ∈ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)}) → 𝑝 = 〈(1st ‘𝑝), (2nd ‘𝑝)〉) |
| 45 | 43, 44 | mpan 424 |
. . . . . 6
⊢ (𝑝 ∈ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)} → 𝑝 = 〈(1st ‘𝑝), (2nd ‘𝑝)〉) |
| 46 | 45 | adantl 277 |
. . . . 5
⊢
(((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)}) → 𝑝 = 〈(1st ‘𝑝), (2nd ‘𝑝)〉) |
| 47 | | breq2 4038 |
. . . . . . . . . 10
⊢ (𝑦 = (2nd ‘𝑝) → ((1st
‘𝑝)𝑅𝑦 ↔ (1st ‘𝑝)𝑅(2nd ‘𝑝))) |
| 48 | 47 | notbid 668 |
. . . . . . . . 9
⊢ (𝑦 = (2nd ‘𝑝) → (¬ (1st
‘𝑝)𝑅𝑦 ↔ ¬ (1st ‘𝑝)𝑅(2nd ‘𝑝))) |
| 49 | | eqeq2 2206 |
. . . . . . . . 9
⊢ (𝑦 = (2nd ‘𝑝) → ((1st
‘𝑝) = 𝑦 ↔ (1st
‘𝑝) = (2nd
‘𝑝))) |
| 50 | 48, 49 | imbi12d 234 |
. . . . . . . 8
⊢ (𝑦 = (2nd ‘𝑝) → ((¬ (1st
‘𝑝)𝑅𝑦 → (1st ‘𝑝) = 𝑦) ↔ (¬ (1st ‘𝑝)𝑅(2nd ‘𝑝) → (1st ‘𝑝) = (2nd ‘𝑝)))) |
| 51 | | breq1 4037 |
. . . . . . . . . . . 12
⊢ (𝑥 = (1st ‘𝑝) → (𝑥𝑅𝑦 ↔ (1st ‘𝑝)𝑅𝑦)) |
| 52 | 51 | notbid 668 |
. . . . . . . . . . 11
⊢ (𝑥 = (1st ‘𝑝) → (¬ 𝑥𝑅𝑦 ↔ ¬ (1st ‘𝑝)𝑅𝑦)) |
| 53 | | eqeq1 2203 |
. . . . . . . . . . 11
⊢ (𝑥 = (1st ‘𝑝) → (𝑥 = 𝑦 ↔ (1st ‘𝑝) = 𝑦)) |
| 54 | 52, 53 | imbi12d 234 |
. . . . . . . . . 10
⊢ (𝑥 = (1st ‘𝑝) → ((¬ 𝑥𝑅𝑦 → 𝑥 = 𝑦) ↔ (¬ (1st ‘𝑝)𝑅𝑦 → (1st ‘𝑝) = 𝑦))) |
| 55 | 54 | ralbidv 2497 |
. . . . . . . . 9
⊢ (𝑥 = (1st ‘𝑝) → (∀𝑦 ∈ 𝐴 (¬ 𝑥𝑅𝑦 → 𝑥 = 𝑦) ↔ ∀𝑦 ∈ 𝐴 (¬ (1st ‘𝑝)𝑅𝑦 → (1st ‘𝑝) = 𝑦))) |
| 56 | 4 | simp3d 1013 |
. . . . . . . . . . 11
⊢ (𝑅 TAp 𝐴 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑦𝑅𝑧)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (¬ 𝑥𝑅𝑦 → 𝑥 = 𝑦))) |
| 57 | 56 | simprd 114 |
. . . . . . . . . 10
⊢ (𝑅 TAp 𝐴 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (¬ 𝑥𝑅𝑦 → 𝑥 = 𝑦)) |
| 58 | 57 | ad2antlr 489 |
. . . . . . . . 9
⊢
(((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)}) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (¬ 𝑥𝑅𝑦 → 𝑥 = 𝑦)) |
| 59 | 32 | anbi1d 465 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = (1st ‘𝑝) → ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ↔ ((1st ‘𝑝) ∈ 𝐴 ∧ 𝑣 ∈ 𝐴))) |
| 60 | | neeq1 2380 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = (1st ‘𝑝) → (𝑢 ≠ 𝑣 ↔ (1st ‘𝑝) ≠ 𝑣)) |
| 61 | 59, 60 | anbi12d 473 |
. . . . . . . . . . . . 13
⊢ (𝑢 = (1st ‘𝑝) → (((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣) ↔ (((1st ‘𝑝) ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ (1st ‘𝑝) ≠ 𝑣))) |
| 62 | 33 | anbi2d 464 |
. . . . . . . . . . . . . 14
⊢ (𝑣 = (2nd ‘𝑝) → (((1st
‘𝑝) ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ↔ ((1st ‘𝑝) ∈ 𝐴 ∧ (2nd ‘𝑝) ∈ 𝐴))) |
| 63 | | neeq2 2381 |
. . . . . . . . . . . . . 14
⊢ (𝑣 = (2nd ‘𝑝) → ((1st
‘𝑝) ≠ 𝑣 ↔ (1st
‘𝑝) ≠
(2nd ‘𝑝))) |
| 64 | 62, 63 | anbi12d 473 |
. . . . . . . . . . . . 13
⊢ (𝑣 = (2nd ‘𝑝) → ((((1st
‘𝑝) ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ (1st ‘𝑝) ≠ 𝑣) ↔ (((1st ‘𝑝) ∈ 𝐴 ∧ (2nd ‘𝑝) ∈ 𝐴) ∧ (1st ‘𝑝) ≠ (2nd
‘𝑝)))) |
| 65 | 61, 64 | elopabi 6262 |
. . . . . . . . . . . 12
⊢ (𝑝 ∈ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)} → (((1st ‘𝑝) ∈ 𝐴 ∧ (2nd ‘𝑝) ∈ 𝐴) ∧ (1st ‘𝑝) ≠ (2nd
‘𝑝))) |
| 66 | 65 | adantl 277 |
. . . . . . . . . . 11
⊢
(((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)}) → (((1st ‘𝑝) ∈ 𝐴 ∧ (2nd ‘𝑝) ∈ 𝐴) ∧ (1st ‘𝑝) ≠ (2nd
‘𝑝))) |
| 67 | 66 | simpld 112 |
. . . . . . . . . 10
⊢
(((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)}) → ((1st ‘𝑝) ∈ 𝐴 ∧ (2nd ‘𝑝) ∈ 𝐴)) |
| 68 | 67 | simpld 112 |
. . . . . . . . 9
⊢
(((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)}) → (1st ‘𝑝) ∈ 𝐴) |
| 69 | 55, 58, 68 | rspcdva 2873 |
. . . . . . . 8
⊢
(((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)}) → ∀𝑦 ∈ 𝐴 (¬ (1st ‘𝑝)𝑅𝑦 → (1st ‘𝑝) = 𝑦)) |
| 70 | 67 | simprd 114 |
. . . . . . . 8
⊢
(((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)}) → (2nd ‘𝑝) ∈ 𝐴) |
| 71 | 50, 69, 70 | rspcdva 2873 |
. . . . . . 7
⊢
(((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)}) → (¬ (1st
‘𝑝)𝑅(2nd ‘𝑝) → (1st ‘𝑝) = (2nd ‘𝑝))) |
| 72 | 66 | simprd 114 |
. . . . . . . 8
⊢
(((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)}) → (1st ‘𝑝) ≠ (2nd
‘𝑝)) |
| 73 | 72 | neneqd 2388 |
. . . . . . 7
⊢
(((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)}) → ¬ (1st ‘𝑝) = (2nd ‘𝑝)) |
| 74 | | exmidexmid 4230 |
. . . . . . . . 9
⊢
(EXMID → DECID (1st
‘𝑝)𝑅(2nd ‘𝑝)) |
| 75 | | con1dc 857 |
. . . . . . . . 9
⊢
(DECID (1st ‘𝑝)𝑅(2nd ‘𝑝) → ((¬ (1st ‘𝑝)𝑅(2nd ‘𝑝) → (1st ‘𝑝) = (2nd ‘𝑝)) → (¬ (1st
‘𝑝) = (2nd
‘𝑝) →
(1st ‘𝑝)𝑅(2nd ‘𝑝)))) |
| 76 | 74, 75 | syl 14 |
. . . . . . . 8
⊢
(EXMID → ((¬ (1st ‘𝑝)𝑅(2nd ‘𝑝) → (1st ‘𝑝) = (2nd ‘𝑝)) → (¬ (1st
‘𝑝) = (2nd
‘𝑝) →
(1st ‘𝑝)𝑅(2nd ‘𝑝)))) |
| 77 | 76 | ad2antrr 488 |
. . . . . . 7
⊢
(((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)}) → ((¬ (1st
‘𝑝)𝑅(2nd ‘𝑝) → (1st ‘𝑝) = (2nd ‘𝑝)) → (¬ (1st
‘𝑝) = (2nd
‘𝑝) →
(1st ‘𝑝)𝑅(2nd ‘𝑝)))) |
| 78 | 71, 73, 77 | mp2d 47 |
. . . . . 6
⊢
(((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)}) → (1st ‘𝑝)𝑅(2nd ‘𝑝)) |
| 79 | | df-br 4035 |
. . . . . 6
⊢
((1st ‘𝑝)𝑅(2nd ‘𝑝) ↔ 〈(1st ‘𝑝), (2nd ‘𝑝)〉 ∈ 𝑅) |
| 80 | 78, 79 | sylib 122 |
. . . . 5
⊢
(((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)}) → 〈(1st ‘𝑝), (2nd ‘𝑝)〉 ∈ 𝑅) |
| 81 | 46, 80 | eqeltrd 2273 |
. . . 4
⊢
(((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)}) → 𝑝 ∈ 𝑅) |
| 82 | 42, 81 | impbida 596 |
. . 3
⊢
((EXMID ∧ 𝑅 TAp 𝐴) → (𝑝 ∈ 𝑅 ↔ 𝑝 ∈ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)})) |
| 83 | 82 | eqrdv 2194 |
. 2
⊢
((EXMID ∧ 𝑅 TAp 𝐴) → 𝑅 = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)}) |
| 84 | | exmidexmid 4230 |
. . . . . . 7
⊢
(EXMID → DECID 𝑥 = 𝑦) |
| 85 | 84 | ralrimivw 2571 |
. . . . . 6
⊢
(EXMID → ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
| 86 | 85 | ralrimivw 2571 |
. . . . 5
⊢
(EXMID → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
| 87 | | netap 7337 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 → {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)} TAp 𝐴) |
| 88 | 86, 87 | syl 14 |
. . . 4
⊢
(EXMID → {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)} TAp 𝐴) |
| 89 | 88 | adantr 276 |
. . 3
⊢
((EXMID ∧ 𝑅 = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)}) → {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)} TAp 𝐴) |
| 90 | | tapeq1 7335 |
. . . 4
⊢ (𝑅 = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)} → (𝑅 TAp 𝐴 ↔ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)} TAp 𝐴)) |
| 91 | 90 | adantl 277 |
. . 3
⊢
((EXMID ∧ 𝑅 = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)}) → (𝑅 TAp 𝐴 ↔ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)} TAp 𝐴)) |
| 92 | 89, 91 | mpbird 167 |
. 2
⊢
((EXMID ∧ 𝑅 = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)}) → 𝑅 TAp 𝐴) |
| 93 | 83, 92 | impbida 596 |
1
⊢
(EXMID → (𝑅 TAp 𝐴 ↔ 𝑅 = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)})) |