ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidapne GIF version

Theorem exmidapne 7442
Description: Excluded middle implies there is only one tight apartness on any class, namely negated equality. (Contributed by Jim Kingdon, 14-Feb-2025.)
Assertion
Ref Expression
exmidapne (EXMID → (𝑅 TAp 𝐴𝑅 = {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}))
Distinct variable group:   𝑢,𝐴,𝑣
Allowed substitution hints:   𝑅(𝑣,𝑢)

Proof of Theorem exmidapne
Dummy variables 𝑝 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 528 . . . . . . 7 (((EXMID𝑅 TAp 𝐴) ∧ 𝑝𝑅) → 𝑅 TAp 𝐴)
2 simpr 110 . . . . . . 7 (((EXMID𝑅 TAp 𝐴) ∧ 𝑝𝑅) → 𝑝𝑅)
3 dftap2 7433 . . . . . . . . . 10 (𝑅 TAp 𝐴 ↔ (𝑅 ⊆ (𝐴 × 𝐴) ∧ (∀𝑥𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑦𝑅𝑥)) ∧ (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑦𝑅𝑧)) ∧ ∀𝑥𝐴𝑦𝐴𝑥𝑅𝑦𝑥 = 𝑦))))
43biimpi 120 . . . . . . . . 9 (𝑅 TAp 𝐴 → (𝑅 ⊆ (𝐴 × 𝐴) ∧ (∀𝑥𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑦𝑅𝑥)) ∧ (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑦𝑅𝑧)) ∧ ∀𝑥𝐴𝑦𝐴𝑥𝑅𝑦𝑥 = 𝑦))))
54simp1d 1033 . . . . . . . 8 (𝑅 TAp 𝐴𝑅 ⊆ (𝐴 × 𝐴))
65sseld 3223 . . . . . . 7 (𝑅 TAp 𝐴 → (𝑝𝑅𝑝 ∈ (𝐴 × 𝐴)))
71, 2, 6sylc 62 . . . . . 6 (((EXMID𝑅 TAp 𝐴) ∧ 𝑝𝑅) → 𝑝 ∈ (𝐴 × 𝐴))
8 1st2nd2 6319 . . . . . 6 (𝑝 ∈ (𝐴 × 𝐴) → 𝑝 = ⟨(1st𝑝), (2nd𝑝)⟩)
97, 8syl 14 . . . . 5 (((EXMID𝑅 TAp 𝐴) ∧ 𝑝𝑅) → 𝑝 = ⟨(1st𝑝), (2nd𝑝)⟩)
10 xp1st 6309 . . . . . . . 8 (𝑝 ∈ (𝐴 × 𝐴) → (1st𝑝) ∈ 𝐴)
117, 10syl 14 . . . . . . 7 (((EXMID𝑅 TAp 𝐴) ∧ 𝑝𝑅) → (1st𝑝) ∈ 𝐴)
12 xp2nd 6310 . . . . . . . 8 (𝑝 ∈ (𝐴 × 𝐴) → (2nd𝑝) ∈ 𝐴)
137, 12syl 14 . . . . . . 7 (((EXMID𝑅 TAp 𝐴) ∧ 𝑝𝑅) → (2nd𝑝) ∈ 𝐴)
149, 2eqeltrrd 2307 . . . . . . . . . 10 (((EXMID𝑅 TAp 𝐴) ∧ 𝑝𝑅) → ⟨(1st𝑝), (2nd𝑝)⟩ ∈ 𝑅)
1514adantr 276 . . . . . . . . 9 ((((EXMID𝑅 TAp 𝐴) ∧ 𝑝𝑅) ∧ (1st𝑝) = (2nd𝑝)) → ⟨(1st𝑝), (2nd𝑝)⟩ ∈ 𝑅)
16 simpr 110 . . . . . . . . . . 11 ((((EXMID𝑅 TAp 𝐴) ∧ 𝑝𝑅) ∧ (1st𝑝) = (2nd𝑝)) → (1st𝑝) = (2nd𝑝))
1716opeq2d 3863 . . . . . . . . . 10 ((((EXMID𝑅 TAp 𝐴) ∧ 𝑝𝑅) ∧ (1st𝑝) = (2nd𝑝)) → ⟨(1st𝑝), (1st𝑝)⟩ = ⟨(1st𝑝), (2nd𝑝)⟩)
18 id 19 . . . . . . . . . . . . . 14 (𝑥 = (1st𝑝) → 𝑥 = (1st𝑝))
1918, 18breq12d 4095 . . . . . . . . . . . . 13 (𝑥 = (1st𝑝) → (𝑥𝑅𝑥 ↔ (1st𝑝)𝑅(1st𝑝)))
2019notbid 671 . . . . . . . . . . . 12 (𝑥 = (1st𝑝) → (¬ 𝑥𝑅𝑥 ↔ ¬ (1st𝑝)𝑅(1st𝑝)))
214simp2d 1034 . . . . . . . . . . . . . 14 (𝑅 TAp 𝐴 → (∀𝑥𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑦𝑅𝑥)))
2221simpld 112 . . . . . . . . . . . . 13 (𝑅 TAp 𝐴 → ∀𝑥𝐴 ¬ 𝑥𝑅𝑥)
2322ad3antlr 493 . . . . . . . . . . . 12 ((((EXMID𝑅 TAp 𝐴) ∧ 𝑝𝑅) ∧ (1st𝑝) = (2nd𝑝)) → ∀𝑥𝐴 ¬ 𝑥𝑅𝑥)
2411adantr 276 . . . . . . . . . . . 12 ((((EXMID𝑅 TAp 𝐴) ∧ 𝑝𝑅) ∧ (1st𝑝) = (2nd𝑝)) → (1st𝑝) ∈ 𝐴)
2520, 23, 24rspcdva 2912 . . . . . . . . . . 11 ((((EXMID𝑅 TAp 𝐴) ∧ 𝑝𝑅) ∧ (1st𝑝) = (2nd𝑝)) → ¬ (1st𝑝)𝑅(1st𝑝))
26 df-br 4083 . . . . . . . . . . 11 ((1st𝑝)𝑅(1st𝑝) ↔ ⟨(1st𝑝), (1st𝑝)⟩ ∈ 𝑅)
2725, 26sylnib 680 . . . . . . . . . 10 ((((EXMID𝑅 TAp 𝐴) ∧ 𝑝𝑅) ∧ (1st𝑝) = (2nd𝑝)) → ¬ ⟨(1st𝑝), (1st𝑝)⟩ ∈ 𝑅)
2817, 27eqneltrrd 2326 . . . . . . . . 9 ((((EXMID𝑅 TAp 𝐴) ∧ 𝑝𝑅) ∧ (1st𝑝) = (2nd𝑝)) → ¬ ⟨(1st𝑝), (2nd𝑝)⟩ ∈ 𝑅)
2915, 28pm2.65da 665 . . . . . . . 8 (((EXMID𝑅 TAp 𝐴) ∧ 𝑝𝑅) → ¬ (1st𝑝) = (2nd𝑝))
3029neqned 2407 . . . . . . 7 (((EXMID𝑅 TAp 𝐴) ∧ 𝑝𝑅) → (1st𝑝) ≠ (2nd𝑝))
3111, 13, 30jca31 309 . . . . . 6 (((EXMID𝑅 TAp 𝐴) ∧ 𝑝𝑅) → (((1st𝑝) ∈ 𝐴 ∧ (2nd𝑝) ∈ 𝐴) ∧ (1st𝑝) ≠ (2nd𝑝)))
32 eleq1 2292 . . . . . . . . . 10 (𝑢 = (1st𝑝) → (𝑢𝐴 ↔ (1st𝑝) ∈ 𝐴))
33 eleq1 2292 . . . . . . . . . 10 (𝑣 = (2nd𝑝) → (𝑣𝐴 ↔ (2nd𝑝) ∈ 𝐴))
3432, 33bi2anan9 608 . . . . . . . . 9 ((𝑢 = (1st𝑝) ∧ 𝑣 = (2nd𝑝)) → ((𝑢𝐴𝑣𝐴) ↔ ((1st𝑝) ∈ 𝐴 ∧ (2nd𝑝) ∈ 𝐴)))
35 simpl 109 . . . . . . . . . 10 ((𝑢 = (1st𝑝) ∧ 𝑣 = (2nd𝑝)) → 𝑢 = (1st𝑝))
36 simpr 110 . . . . . . . . . 10 ((𝑢 = (1st𝑝) ∧ 𝑣 = (2nd𝑝)) → 𝑣 = (2nd𝑝))
3735, 36neeq12d 2420 . . . . . . . . 9 ((𝑢 = (1st𝑝) ∧ 𝑣 = (2nd𝑝)) → (𝑢𝑣 ↔ (1st𝑝) ≠ (2nd𝑝)))
3834, 37anbi12d 473 . . . . . . . 8 ((𝑢 = (1st𝑝) ∧ 𝑣 = (2nd𝑝)) → (((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣) ↔ (((1st𝑝) ∈ 𝐴 ∧ (2nd𝑝) ∈ 𝐴) ∧ (1st𝑝) ≠ (2nd𝑝))))
3938opelopabga 4350 . . . . . . 7 (((1st𝑝) ∈ 𝐴 ∧ (2nd𝑝) ∈ 𝐴) → (⟨(1st𝑝), (2nd𝑝)⟩ ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)} ↔ (((1st𝑝) ∈ 𝐴 ∧ (2nd𝑝) ∈ 𝐴) ∧ (1st𝑝) ≠ (2nd𝑝))))
4011, 13, 39syl2anc 411 . . . . . 6 (((EXMID𝑅 TAp 𝐴) ∧ 𝑝𝑅) → (⟨(1st𝑝), (2nd𝑝)⟩ ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)} ↔ (((1st𝑝) ∈ 𝐴 ∧ (2nd𝑝) ∈ 𝐴) ∧ (1st𝑝) ≠ (2nd𝑝))))
4131, 40mpbird 167 . . . . 5 (((EXMID𝑅 TAp 𝐴) ∧ 𝑝𝑅) → ⟨(1st𝑝), (2nd𝑝)⟩ ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)})
429, 41eqeltrd 2306 . . . 4 (((EXMID𝑅 TAp 𝐴) ∧ 𝑝𝑅) → 𝑝 ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)})
43 relopab 4847 . . . . . . 7 Rel {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}
44 1st2nd 6325 . . . . . . 7 ((Rel {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)} ∧ 𝑝 ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}) → 𝑝 = ⟨(1st𝑝), (2nd𝑝)⟩)
4543, 44mpan 424 . . . . . 6 (𝑝 ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)} → 𝑝 = ⟨(1st𝑝), (2nd𝑝)⟩)
4645adantl 277 . . . . 5 (((EXMID𝑅 TAp 𝐴) ∧ 𝑝 ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}) → 𝑝 = ⟨(1st𝑝), (2nd𝑝)⟩)
47 breq2 4086 . . . . . . . . . 10 (𝑦 = (2nd𝑝) → ((1st𝑝)𝑅𝑦 ↔ (1st𝑝)𝑅(2nd𝑝)))
4847notbid 671 . . . . . . . . 9 (𝑦 = (2nd𝑝) → (¬ (1st𝑝)𝑅𝑦 ↔ ¬ (1st𝑝)𝑅(2nd𝑝)))
49 eqeq2 2239 . . . . . . . . 9 (𝑦 = (2nd𝑝) → ((1st𝑝) = 𝑦 ↔ (1st𝑝) = (2nd𝑝)))
5048, 49imbi12d 234 . . . . . . . 8 (𝑦 = (2nd𝑝) → ((¬ (1st𝑝)𝑅𝑦 → (1st𝑝) = 𝑦) ↔ (¬ (1st𝑝)𝑅(2nd𝑝) → (1st𝑝) = (2nd𝑝))))
51 breq1 4085 . . . . . . . . . . . 12 (𝑥 = (1st𝑝) → (𝑥𝑅𝑦 ↔ (1st𝑝)𝑅𝑦))
5251notbid 671 . . . . . . . . . . 11 (𝑥 = (1st𝑝) → (¬ 𝑥𝑅𝑦 ↔ ¬ (1st𝑝)𝑅𝑦))
53 eqeq1 2236 . . . . . . . . . . 11 (𝑥 = (1st𝑝) → (𝑥 = 𝑦 ↔ (1st𝑝) = 𝑦))
5452, 53imbi12d 234 . . . . . . . . . 10 (𝑥 = (1st𝑝) → ((¬ 𝑥𝑅𝑦𝑥 = 𝑦) ↔ (¬ (1st𝑝)𝑅𝑦 → (1st𝑝) = 𝑦)))
5554ralbidv 2530 . . . . . . . . 9 (𝑥 = (1st𝑝) → (∀𝑦𝐴𝑥𝑅𝑦𝑥 = 𝑦) ↔ ∀𝑦𝐴 (¬ (1st𝑝)𝑅𝑦 → (1st𝑝) = 𝑦)))
564simp3d 1035 . . . . . . . . . . 11 (𝑅 TAp 𝐴 → (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑦𝑅𝑧)) ∧ ∀𝑥𝐴𝑦𝐴𝑥𝑅𝑦𝑥 = 𝑦)))
5756simprd 114 . . . . . . . . . 10 (𝑅 TAp 𝐴 → ∀𝑥𝐴𝑦𝐴𝑥𝑅𝑦𝑥 = 𝑦))
5857ad2antlr 489 . . . . . . . . 9 (((EXMID𝑅 TAp 𝐴) ∧ 𝑝 ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}) → ∀𝑥𝐴𝑦𝐴𝑥𝑅𝑦𝑥 = 𝑦))
5932anbi1d 465 . . . . . . . . . . . . . 14 (𝑢 = (1st𝑝) → ((𝑢𝐴𝑣𝐴) ↔ ((1st𝑝) ∈ 𝐴𝑣𝐴)))
60 neeq1 2413 . . . . . . . . . . . . . 14 (𝑢 = (1st𝑝) → (𝑢𝑣 ↔ (1st𝑝) ≠ 𝑣))
6159, 60anbi12d 473 . . . . . . . . . . . . 13 (𝑢 = (1st𝑝) → (((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣) ↔ (((1st𝑝) ∈ 𝐴𝑣𝐴) ∧ (1st𝑝) ≠ 𝑣)))
6233anbi2d 464 . . . . . . . . . . . . . 14 (𝑣 = (2nd𝑝) → (((1st𝑝) ∈ 𝐴𝑣𝐴) ↔ ((1st𝑝) ∈ 𝐴 ∧ (2nd𝑝) ∈ 𝐴)))
63 neeq2 2414 . . . . . . . . . . . . . 14 (𝑣 = (2nd𝑝) → ((1st𝑝) ≠ 𝑣 ↔ (1st𝑝) ≠ (2nd𝑝)))
6462, 63anbi12d 473 . . . . . . . . . . . . 13 (𝑣 = (2nd𝑝) → ((((1st𝑝) ∈ 𝐴𝑣𝐴) ∧ (1st𝑝) ≠ 𝑣) ↔ (((1st𝑝) ∈ 𝐴 ∧ (2nd𝑝) ∈ 𝐴) ∧ (1st𝑝) ≠ (2nd𝑝))))
6561, 64elopabi 6339 . . . . . . . . . . . 12 (𝑝 ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)} → (((1st𝑝) ∈ 𝐴 ∧ (2nd𝑝) ∈ 𝐴) ∧ (1st𝑝) ≠ (2nd𝑝)))
6665adantl 277 . . . . . . . . . . 11 (((EXMID𝑅 TAp 𝐴) ∧ 𝑝 ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}) → (((1st𝑝) ∈ 𝐴 ∧ (2nd𝑝) ∈ 𝐴) ∧ (1st𝑝) ≠ (2nd𝑝)))
6766simpld 112 . . . . . . . . . 10 (((EXMID𝑅 TAp 𝐴) ∧ 𝑝 ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}) → ((1st𝑝) ∈ 𝐴 ∧ (2nd𝑝) ∈ 𝐴))
6867simpld 112 . . . . . . . . 9 (((EXMID𝑅 TAp 𝐴) ∧ 𝑝 ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}) → (1st𝑝) ∈ 𝐴)
6955, 58, 68rspcdva 2912 . . . . . . . 8 (((EXMID𝑅 TAp 𝐴) ∧ 𝑝 ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}) → ∀𝑦𝐴 (¬ (1st𝑝)𝑅𝑦 → (1st𝑝) = 𝑦))
7067simprd 114 . . . . . . . 8 (((EXMID𝑅 TAp 𝐴) ∧ 𝑝 ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}) → (2nd𝑝) ∈ 𝐴)
7150, 69, 70rspcdva 2912 . . . . . . 7 (((EXMID𝑅 TAp 𝐴) ∧ 𝑝 ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}) → (¬ (1st𝑝)𝑅(2nd𝑝) → (1st𝑝) = (2nd𝑝)))
7266simprd 114 . . . . . . . 8 (((EXMID𝑅 TAp 𝐴) ∧ 𝑝 ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}) → (1st𝑝) ≠ (2nd𝑝))
7372neneqd 2421 . . . . . . 7 (((EXMID𝑅 TAp 𝐴) ∧ 𝑝 ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}) → ¬ (1st𝑝) = (2nd𝑝))
74 exmidexmid 4279 . . . . . . . . 9 (EXMIDDECID (1st𝑝)𝑅(2nd𝑝))
75 con1dc 861 . . . . . . . . 9 (DECID (1st𝑝)𝑅(2nd𝑝) → ((¬ (1st𝑝)𝑅(2nd𝑝) → (1st𝑝) = (2nd𝑝)) → (¬ (1st𝑝) = (2nd𝑝) → (1st𝑝)𝑅(2nd𝑝))))
7674, 75syl 14 . . . . . . . 8 (EXMID → ((¬ (1st𝑝)𝑅(2nd𝑝) → (1st𝑝) = (2nd𝑝)) → (¬ (1st𝑝) = (2nd𝑝) → (1st𝑝)𝑅(2nd𝑝))))
7776ad2antrr 488 . . . . . . 7 (((EXMID𝑅 TAp 𝐴) ∧ 𝑝 ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}) → ((¬ (1st𝑝)𝑅(2nd𝑝) → (1st𝑝) = (2nd𝑝)) → (¬ (1st𝑝) = (2nd𝑝) → (1st𝑝)𝑅(2nd𝑝))))
7871, 73, 77mp2d 47 . . . . . 6 (((EXMID𝑅 TAp 𝐴) ∧ 𝑝 ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}) → (1st𝑝)𝑅(2nd𝑝))
79 df-br 4083 . . . . . 6 ((1st𝑝)𝑅(2nd𝑝) ↔ ⟨(1st𝑝), (2nd𝑝)⟩ ∈ 𝑅)
8078, 79sylib 122 . . . . 5 (((EXMID𝑅 TAp 𝐴) ∧ 𝑝 ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}) → ⟨(1st𝑝), (2nd𝑝)⟩ ∈ 𝑅)
8146, 80eqeltrd 2306 . . . 4 (((EXMID𝑅 TAp 𝐴) ∧ 𝑝 ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}) → 𝑝𝑅)
8242, 81impbida 598 . . 3 ((EXMID𝑅 TAp 𝐴) → (𝑝𝑅𝑝 ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}))
8382eqrdv 2227 . 2 ((EXMID𝑅 TAp 𝐴) → 𝑅 = {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)})
84 exmidexmid 4279 . . . . . . 7 (EXMIDDECID 𝑥 = 𝑦)
8584ralrimivw 2604 . . . . . 6 (EXMID → ∀𝑦𝐴 DECID 𝑥 = 𝑦)
8685ralrimivw 2604 . . . . 5 (EXMID → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
87 netap 7436 . . . . 5 (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 → {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)} TAp 𝐴)
8886, 87syl 14 . . . 4 (EXMID → {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)} TAp 𝐴)
8988adantr 276 . . 3 ((EXMID𝑅 = {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}) → {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)} TAp 𝐴)
90 tapeq1 7434 . . . 4 (𝑅 = {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)} → (𝑅 TAp 𝐴 ↔ {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)} TAp 𝐴))
9190adantl 277 . . 3 ((EXMID𝑅 = {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}) → (𝑅 TAp 𝐴 ↔ {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)} TAp 𝐴))
9289, 91mpbird 167 . 2 ((EXMID𝑅 = {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}) → 𝑅 TAp 𝐴)
9383, 92impbida 598 1 (EXMID → (𝑅 TAp 𝐴𝑅 = {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 713  DECID wdc 839  w3a 1002   = wceq 1395  wcel 2200  wne 2400  wral 2508  wss 3197  cop 3669   class class class wbr 4082  {copab 4143  EXMIDwem 4277   × cxp 4716  Rel wrel 4723  cfv 5317  1st c1st 6282  2nd c2nd 6283   TAp wtap 7431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-exmid 4278  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fo 5323  df-fv 5325  df-1st 6284  df-2nd 6285  df-pap 7430  df-tap 7432
This theorem is referenced by:  exmidmotap  7443
  Copyright terms: Public domain W3C validator