| Step | Hyp | Ref
 | Expression | 
| 1 |   | simplr 528 | 
. . . . . . 7
⊢
(((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ 𝑅) → 𝑅 TAp 𝐴) | 
| 2 |   | simpr 110 | 
. . . . . . 7
⊢
(((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ 𝑅) → 𝑝 ∈ 𝑅) | 
| 3 |   | dftap2 7318 | 
. . . . . . . . . 10
⊢ (𝑅 TAp 𝐴 ↔ (𝑅 ⊆ (𝐴 × 𝐴) ∧ (∀𝑥 ∈ 𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → 𝑦𝑅𝑥)) ∧ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑦𝑅𝑧)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (¬ 𝑥𝑅𝑦 → 𝑥 = 𝑦)))) | 
| 4 | 3 | biimpi 120 | 
. . . . . . . . 9
⊢ (𝑅 TAp 𝐴 → (𝑅 ⊆ (𝐴 × 𝐴) ∧ (∀𝑥 ∈ 𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → 𝑦𝑅𝑥)) ∧ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑦𝑅𝑧)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (¬ 𝑥𝑅𝑦 → 𝑥 = 𝑦)))) | 
| 5 | 4 | simp1d 1011 | 
. . . . . . . 8
⊢ (𝑅 TAp 𝐴 → 𝑅 ⊆ (𝐴 × 𝐴)) | 
| 6 | 5 | sseld 3182 | 
. . . . . . 7
⊢ (𝑅 TAp 𝐴 → (𝑝 ∈ 𝑅 → 𝑝 ∈ (𝐴 × 𝐴))) | 
| 7 | 1, 2, 6 | sylc 62 | 
. . . . . 6
⊢
(((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ 𝑅) → 𝑝 ∈ (𝐴 × 𝐴)) | 
| 8 |   | 1st2nd2 6233 | 
. . . . . 6
⊢ (𝑝 ∈ (𝐴 × 𝐴) → 𝑝 = 〈(1st ‘𝑝), (2nd ‘𝑝)〉) | 
| 9 | 7, 8 | syl 14 | 
. . . . 5
⊢
(((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ 𝑅) → 𝑝 = 〈(1st ‘𝑝), (2nd ‘𝑝)〉) | 
| 10 |   | xp1st 6223 | 
. . . . . . . 8
⊢ (𝑝 ∈ (𝐴 × 𝐴) → (1st ‘𝑝) ∈ 𝐴) | 
| 11 | 7, 10 | syl 14 | 
. . . . . . 7
⊢
(((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ 𝑅) → (1st ‘𝑝) ∈ 𝐴) | 
| 12 |   | xp2nd 6224 | 
. . . . . . . 8
⊢ (𝑝 ∈ (𝐴 × 𝐴) → (2nd ‘𝑝) ∈ 𝐴) | 
| 13 | 7, 12 | syl 14 | 
. . . . . . 7
⊢
(((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ 𝑅) → (2nd ‘𝑝) ∈ 𝐴) | 
| 14 | 9, 2 | eqeltrrd 2274 | 
. . . . . . . . . 10
⊢
(((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ 𝑅) → 〈(1st ‘𝑝), (2nd ‘𝑝)〉 ∈ 𝑅) | 
| 15 | 14 | adantr 276 | 
. . . . . . . . 9
⊢
((((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ 𝑅) ∧ (1st ‘𝑝) = (2nd ‘𝑝)) → 〈(1st
‘𝑝), (2nd
‘𝑝)〉 ∈
𝑅) | 
| 16 |   | simpr 110 | 
. . . . . . . . . . 11
⊢
((((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ 𝑅) ∧ (1st ‘𝑝) = (2nd ‘𝑝)) → (1st
‘𝑝) = (2nd
‘𝑝)) | 
| 17 | 16 | opeq2d 3815 | 
. . . . . . . . . 10
⊢
((((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ 𝑅) ∧ (1st ‘𝑝) = (2nd ‘𝑝)) → 〈(1st
‘𝑝), (1st
‘𝑝)〉 =
〈(1st ‘𝑝), (2nd ‘𝑝)〉) | 
| 18 |   | id 19 | 
. . . . . . . . . . . . . 14
⊢ (𝑥 = (1st ‘𝑝) → 𝑥 = (1st ‘𝑝)) | 
| 19 | 18, 18 | breq12d 4046 | 
. . . . . . . . . . . . 13
⊢ (𝑥 = (1st ‘𝑝) → (𝑥𝑅𝑥 ↔ (1st ‘𝑝)𝑅(1st ‘𝑝))) | 
| 20 | 19 | notbid 668 | 
. . . . . . . . . . . 12
⊢ (𝑥 = (1st ‘𝑝) → (¬ 𝑥𝑅𝑥 ↔ ¬ (1st ‘𝑝)𝑅(1st ‘𝑝))) | 
| 21 | 4 | simp2d 1012 | 
. . . . . . . . . . . . . 14
⊢ (𝑅 TAp 𝐴 → (∀𝑥 ∈ 𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → 𝑦𝑅𝑥))) | 
| 22 | 21 | simpld 112 | 
. . . . . . . . . . . . 13
⊢ (𝑅 TAp 𝐴 → ∀𝑥 ∈ 𝐴 ¬ 𝑥𝑅𝑥) | 
| 23 | 22 | ad3antlr 493 | 
. . . . . . . . . . . 12
⊢
((((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ 𝑅) ∧ (1st ‘𝑝) = (2nd ‘𝑝)) → ∀𝑥 ∈ 𝐴 ¬ 𝑥𝑅𝑥) | 
| 24 | 11 | adantr 276 | 
. . . . . . . . . . . 12
⊢
((((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ 𝑅) ∧ (1st ‘𝑝) = (2nd ‘𝑝)) → (1st
‘𝑝) ∈ 𝐴) | 
| 25 | 20, 23, 24 | rspcdva 2873 | 
. . . . . . . . . . 11
⊢
((((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ 𝑅) ∧ (1st ‘𝑝) = (2nd ‘𝑝)) → ¬ (1st
‘𝑝)𝑅(1st ‘𝑝)) | 
| 26 |   | df-br 4034 | 
. . . . . . . . . . 11
⊢
((1st ‘𝑝)𝑅(1st ‘𝑝) ↔ 〈(1st ‘𝑝), (1st ‘𝑝)〉 ∈ 𝑅) | 
| 27 | 25, 26 | sylnib 677 | 
. . . . . . . . . 10
⊢
((((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ 𝑅) ∧ (1st ‘𝑝) = (2nd ‘𝑝)) → ¬
〈(1st ‘𝑝), (1st ‘𝑝)〉 ∈ 𝑅) | 
| 28 | 17, 27 | eqneltrrd 2293 | 
. . . . . . . . 9
⊢
((((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ 𝑅) ∧ (1st ‘𝑝) = (2nd ‘𝑝)) → ¬
〈(1st ‘𝑝), (2nd ‘𝑝)〉 ∈ 𝑅) | 
| 29 | 15, 28 | pm2.65da 662 | 
. . . . . . . 8
⊢
(((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ 𝑅) → ¬ (1st ‘𝑝) = (2nd ‘𝑝)) | 
| 30 | 29 | neqned 2374 | 
. . . . . . 7
⊢
(((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ 𝑅) → (1st ‘𝑝) ≠ (2nd
‘𝑝)) | 
| 31 | 11, 13, 30 | jca31 309 | 
. . . . . 6
⊢
(((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ 𝑅) → (((1st ‘𝑝) ∈ 𝐴 ∧ (2nd ‘𝑝) ∈ 𝐴) ∧ (1st ‘𝑝) ≠ (2nd
‘𝑝))) | 
| 32 |   | eleq1 2259 | 
. . . . . . . . . 10
⊢ (𝑢 = (1st ‘𝑝) → (𝑢 ∈ 𝐴 ↔ (1st ‘𝑝) ∈ 𝐴)) | 
| 33 |   | eleq1 2259 | 
. . . . . . . . . 10
⊢ (𝑣 = (2nd ‘𝑝) → (𝑣 ∈ 𝐴 ↔ (2nd ‘𝑝) ∈ 𝐴)) | 
| 34 | 32, 33 | bi2anan9 606 | 
. . . . . . . . 9
⊢ ((𝑢 = (1st ‘𝑝) ∧ 𝑣 = (2nd ‘𝑝)) → ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ↔ ((1st ‘𝑝) ∈ 𝐴 ∧ (2nd ‘𝑝) ∈ 𝐴))) | 
| 35 |   | simpl 109 | 
. . . . . . . . . 10
⊢ ((𝑢 = (1st ‘𝑝) ∧ 𝑣 = (2nd ‘𝑝)) → 𝑢 = (1st ‘𝑝)) | 
| 36 |   | simpr 110 | 
. . . . . . . . . 10
⊢ ((𝑢 = (1st ‘𝑝) ∧ 𝑣 = (2nd ‘𝑝)) → 𝑣 = (2nd ‘𝑝)) | 
| 37 | 35, 36 | neeq12d 2387 | 
. . . . . . . . 9
⊢ ((𝑢 = (1st ‘𝑝) ∧ 𝑣 = (2nd ‘𝑝)) → (𝑢 ≠ 𝑣 ↔ (1st ‘𝑝) ≠ (2nd
‘𝑝))) | 
| 38 | 34, 37 | anbi12d 473 | 
. . . . . . . 8
⊢ ((𝑢 = (1st ‘𝑝) ∧ 𝑣 = (2nd ‘𝑝)) → (((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣) ↔ (((1st ‘𝑝) ∈ 𝐴 ∧ (2nd ‘𝑝) ∈ 𝐴) ∧ (1st ‘𝑝) ≠ (2nd
‘𝑝)))) | 
| 39 | 38 | opelopabga 4297 | 
. . . . . . 7
⊢
(((1st ‘𝑝) ∈ 𝐴 ∧ (2nd ‘𝑝) ∈ 𝐴) → (〈(1st ‘𝑝), (2nd ‘𝑝)〉 ∈ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)} ↔ (((1st ‘𝑝) ∈ 𝐴 ∧ (2nd ‘𝑝) ∈ 𝐴) ∧ (1st ‘𝑝) ≠ (2nd
‘𝑝)))) | 
| 40 | 11, 13, 39 | syl2anc 411 | 
. . . . . 6
⊢
(((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ 𝑅) → (〈(1st ‘𝑝), (2nd ‘𝑝)〉 ∈ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)} ↔ (((1st ‘𝑝) ∈ 𝐴 ∧ (2nd ‘𝑝) ∈ 𝐴) ∧ (1st ‘𝑝) ≠ (2nd
‘𝑝)))) | 
| 41 | 31, 40 | mpbird 167 | 
. . . . 5
⊢
(((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ 𝑅) → 〈(1st ‘𝑝), (2nd ‘𝑝)〉 ∈ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)}) | 
| 42 | 9, 41 | eqeltrd 2273 | 
. . . 4
⊢
(((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ 𝑅) → 𝑝 ∈ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)}) | 
| 43 |   | relopab 4792 | 
. . . . . . 7
⊢ Rel
{〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)} | 
| 44 |   | 1st2nd 6239 | 
. . . . . . 7
⊢ ((Rel
{〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)} ∧ 𝑝 ∈ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)}) → 𝑝 = 〈(1st ‘𝑝), (2nd ‘𝑝)〉) | 
| 45 | 43, 44 | mpan 424 | 
. . . . . 6
⊢ (𝑝 ∈ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)} → 𝑝 = 〈(1st ‘𝑝), (2nd ‘𝑝)〉) | 
| 46 | 45 | adantl 277 | 
. . . . 5
⊢
(((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)}) → 𝑝 = 〈(1st ‘𝑝), (2nd ‘𝑝)〉) | 
| 47 |   | breq2 4037 | 
. . . . . . . . . 10
⊢ (𝑦 = (2nd ‘𝑝) → ((1st
‘𝑝)𝑅𝑦 ↔ (1st ‘𝑝)𝑅(2nd ‘𝑝))) | 
| 48 | 47 | notbid 668 | 
. . . . . . . . 9
⊢ (𝑦 = (2nd ‘𝑝) → (¬ (1st
‘𝑝)𝑅𝑦 ↔ ¬ (1st ‘𝑝)𝑅(2nd ‘𝑝))) | 
| 49 |   | eqeq2 2206 | 
. . . . . . . . 9
⊢ (𝑦 = (2nd ‘𝑝) → ((1st
‘𝑝) = 𝑦 ↔ (1st
‘𝑝) = (2nd
‘𝑝))) | 
| 50 | 48, 49 | imbi12d 234 | 
. . . . . . . 8
⊢ (𝑦 = (2nd ‘𝑝) → ((¬ (1st
‘𝑝)𝑅𝑦 → (1st ‘𝑝) = 𝑦) ↔ (¬ (1st ‘𝑝)𝑅(2nd ‘𝑝) → (1st ‘𝑝) = (2nd ‘𝑝)))) | 
| 51 |   | breq1 4036 | 
. . . . . . . . . . . 12
⊢ (𝑥 = (1st ‘𝑝) → (𝑥𝑅𝑦 ↔ (1st ‘𝑝)𝑅𝑦)) | 
| 52 | 51 | notbid 668 | 
. . . . . . . . . . 11
⊢ (𝑥 = (1st ‘𝑝) → (¬ 𝑥𝑅𝑦 ↔ ¬ (1st ‘𝑝)𝑅𝑦)) | 
| 53 |   | eqeq1 2203 | 
. . . . . . . . . . 11
⊢ (𝑥 = (1st ‘𝑝) → (𝑥 = 𝑦 ↔ (1st ‘𝑝) = 𝑦)) | 
| 54 | 52, 53 | imbi12d 234 | 
. . . . . . . . . 10
⊢ (𝑥 = (1st ‘𝑝) → ((¬ 𝑥𝑅𝑦 → 𝑥 = 𝑦) ↔ (¬ (1st ‘𝑝)𝑅𝑦 → (1st ‘𝑝) = 𝑦))) | 
| 55 | 54 | ralbidv 2497 | 
. . . . . . . . 9
⊢ (𝑥 = (1st ‘𝑝) → (∀𝑦 ∈ 𝐴 (¬ 𝑥𝑅𝑦 → 𝑥 = 𝑦) ↔ ∀𝑦 ∈ 𝐴 (¬ (1st ‘𝑝)𝑅𝑦 → (1st ‘𝑝) = 𝑦))) | 
| 56 | 4 | simp3d 1013 | 
. . . . . . . . . . 11
⊢ (𝑅 TAp 𝐴 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑦𝑅𝑧)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (¬ 𝑥𝑅𝑦 → 𝑥 = 𝑦))) | 
| 57 | 56 | simprd 114 | 
. . . . . . . . . 10
⊢ (𝑅 TAp 𝐴 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (¬ 𝑥𝑅𝑦 → 𝑥 = 𝑦)) | 
| 58 | 57 | ad2antlr 489 | 
. . . . . . . . 9
⊢
(((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)}) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (¬ 𝑥𝑅𝑦 → 𝑥 = 𝑦)) | 
| 59 | 32 | anbi1d 465 | 
. . . . . . . . . . . . . 14
⊢ (𝑢 = (1st ‘𝑝) → ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ↔ ((1st ‘𝑝) ∈ 𝐴 ∧ 𝑣 ∈ 𝐴))) | 
| 60 |   | neeq1 2380 | 
. . . . . . . . . . . . . 14
⊢ (𝑢 = (1st ‘𝑝) → (𝑢 ≠ 𝑣 ↔ (1st ‘𝑝) ≠ 𝑣)) | 
| 61 | 59, 60 | anbi12d 473 | 
. . . . . . . . . . . . 13
⊢ (𝑢 = (1st ‘𝑝) → (((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣) ↔ (((1st ‘𝑝) ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ (1st ‘𝑝) ≠ 𝑣))) | 
| 62 | 33 | anbi2d 464 | 
. . . . . . . . . . . . . 14
⊢ (𝑣 = (2nd ‘𝑝) → (((1st
‘𝑝) ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ↔ ((1st ‘𝑝) ∈ 𝐴 ∧ (2nd ‘𝑝) ∈ 𝐴))) | 
| 63 |   | neeq2 2381 | 
. . . . . . . . . . . . . 14
⊢ (𝑣 = (2nd ‘𝑝) → ((1st
‘𝑝) ≠ 𝑣 ↔ (1st
‘𝑝) ≠
(2nd ‘𝑝))) | 
| 64 | 62, 63 | anbi12d 473 | 
. . . . . . . . . . . . 13
⊢ (𝑣 = (2nd ‘𝑝) → ((((1st
‘𝑝) ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ (1st ‘𝑝) ≠ 𝑣) ↔ (((1st ‘𝑝) ∈ 𝐴 ∧ (2nd ‘𝑝) ∈ 𝐴) ∧ (1st ‘𝑝) ≠ (2nd
‘𝑝)))) | 
| 65 | 61, 64 | elopabi 6253 | 
. . . . . . . . . . . 12
⊢ (𝑝 ∈ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)} → (((1st ‘𝑝) ∈ 𝐴 ∧ (2nd ‘𝑝) ∈ 𝐴) ∧ (1st ‘𝑝) ≠ (2nd
‘𝑝))) | 
| 66 | 65 | adantl 277 | 
. . . . . . . . . . 11
⊢
(((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)}) → (((1st ‘𝑝) ∈ 𝐴 ∧ (2nd ‘𝑝) ∈ 𝐴) ∧ (1st ‘𝑝) ≠ (2nd
‘𝑝))) | 
| 67 | 66 | simpld 112 | 
. . . . . . . . . 10
⊢
(((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)}) → ((1st ‘𝑝) ∈ 𝐴 ∧ (2nd ‘𝑝) ∈ 𝐴)) | 
| 68 | 67 | simpld 112 | 
. . . . . . . . 9
⊢
(((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)}) → (1st ‘𝑝) ∈ 𝐴) | 
| 69 | 55, 58, 68 | rspcdva 2873 | 
. . . . . . . 8
⊢
(((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)}) → ∀𝑦 ∈ 𝐴 (¬ (1st ‘𝑝)𝑅𝑦 → (1st ‘𝑝) = 𝑦)) | 
| 70 | 67 | simprd 114 | 
. . . . . . . 8
⊢
(((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)}) → (2nd ‘𝑝) ∈ 𝐴) | 
| 71 | 50, 69, 70 | rspcdva 2873 | 
. . . . . . 7
⊢
(((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)}) → (¬ (1st
‘𝑝)𝑅(2nd ‘𝑝) → (1st ‘𝑝) = (2nd ‘𝑝))) | 
| 72 | 66 | simprd 114 | 
. . . . . . . 8
⊢
(((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)}) → (1st ‘𝑝) ≠ (2nd
‘𝑝)) | 
| 73 | 72 | neneqd 2388 | 
. . . . . . 7
⊢
(((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)}) → ¬ (1st ‘𝑝) = (2nd ‘𝑝)) | 
| 74 |   | exmidexmid 4229 | 
. . . . . . . . 9
⊢
(EXMID → DECID (1st
‘𝑝)𝑅(2nd ‘𝑝)) | 
| 75 |   | con1dc 857 | 
. . . . . . . . 9
⊢
(DECID (1st ‘𝑝)𝑅(2nd ‘𝑝) → ((¬ (1st ‘𝑝)𝑅(2nd ‘𝑝) → (1st ‘𝑝) = (2nd ‘𝑝)) → (¬ (1st
‘𝑝) = (2nd
‘𝑝) →
(1st ‘𝑝)𝑅(2nd ‘𝑝)))) | 
| 76 | 74, 75 | syl 14 | 
. . . . . . . 8
⊢
(EXMID → ((¬ (1st ‘𝑝)𝑅(2nd ‘𝑝) → (1st ‘𝑝) = (2nd ‘𝑝)) → (¬ (1st
‘𝑝) = (2nd
‘𝑝) →
(1st ‘𝑝)𝑅(2nd ‘𝑝)))) | 
| 77 | 76 | ad2antrr 488 | 
. . . . . . 7
⊢
(((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)}) → ((¬ (1st
‘𝑝)𝑅(2nd ‘𝑝) → (1st ‘𝑝) = (2nd ‘𝑝)) → (¬ (1st
‘𝑝) = (2nd
‘𝑝) →
(1st ‘𝑝)𝑅(2nd ‘𝑝)))) | 
| 78 | 71, 73, 77 | mp2d 47 | 
. . . . . 6
⊢
(((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)}) → (1st ‘𝑝)𝑅(2nd ‘𝑝)) | 
| 79 |   | df-br 4034 | 
. . . . . 6
⊢
((1st ‘𝑝)𝑅(2nd ‘𝑝) ↔ 〈(1st ‘𝑝), (2nd ‘𝑝)〉 ∈ 𝑅) | 
| 80 | 78, 79 | sylib 122 | 
. . . . 5
⊢
(((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)}) → 〈(1st ‘𝑝), (2nd ‘𝑝)〉 ∈ 𝑅) | 
| 81 | 46, 80 | eqeltrd 2273 | 
. . . 4
⊢
(((EXMID ∧ 𝑅 TAp 𝐴) ∧ 𝑝 ∈ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)}) → 𝑝 ∈ 𝑅) | 
| 82 | 42, 81 | impbida 596 | 
. . 3
⊢
((EXMID ∧ 𝑅 TAp 𝐴) → (𝑝 ∈ 𝑅 ↔ 𝑝 ∈ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)})) | 
| 83 | 82 | eqrdv 2194 | 
. 2
⊢
((EXMID ∧ 𝑅 TAp 𝐴) → 𝑅 = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)}) | 
| 84 |   | exmidexmid 4229 | 
. . . . . . 7
⊢
(EXMID → DECID 𝑥 = 𝑦) | 
| 85 | 84 | ralrimivw 2571 | 
. . . . . 6
⊢
(EXMID → ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) | 
| 86 | 85 | ralrimivw 2571 | 
. . . . 5
⊢
(EXMID → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) | 
| 87 |   | netap 7321 | 
. . . . 5
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 → {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)} TAp 𝐴) | 
| 88 | 86, 87 | syl 14 | 
. . . 4
⊢
(EXMID → {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)} TAp 𝐴) | 
| 89 | 88 | adantr 276 | 
. . 3
⊢
((EXMID ∧ 𝑅 = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)}) → {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)} TAp 𝐴) | 
| 90 |   | tapeq1 7319 | 
. . . 4
⊢ (𝑅 = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)} → (𝑅 TAp 𝐴 ↔ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)} TAp 𝐴)) | 
| 91 | 90 | adantl 277 | 
. . 3
⊢
((EXMID ∧ 𝑅 = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)}) → (𝑅 TAp 𝐴 ↔ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)} TAp 𝐴)) | 
| 92 | 89, 91 | mpbird 167 | 
. 2
⊢
((EXMID ∧ 𝑅 = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)}) → 𝑅 TAp 𝐴) | 
| 93 | 83, 92 | impbida 596 | 
1
⊢
(EXMID → (𝑅 TAp 𝐴 ↔ 𝑅 = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)})) |