Step | Hyp | Ref
| Expression |
1 | | ctinfom 12361 |
. . . 4
⊢ (𝐴 ≈ ℕ ↔
(∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ω–onto→𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓‘𝑘) ∈ (𝑓 “ 𝑛)))) |
2 | 1 | simplbi 272 |
. . 3
⊢ (𝐴 ≈ ℕ →
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
3 | 1 | simprbi 273 |
. . . 4
⊢ (𝐴 ≈ ℕ →
∃𝑓(𝑓:ω–onto→𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓‘𝑘) ∈ (𝑓 “ 𝑛))) |
4 | | simpl 108 |
. . . . . 6
⊢ ((𝑓:ω–onto→𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓‘𝑘) ∈ (𝑓 “ 𝑛)) → 𝑓:ω–onto→𝐴) |
5 | 4 | a1i 9 |
. . . . 5
⊢ (𝐴 ≈ ℕ → ((𝑓:ω–onto→𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓‘𝑘) ∈ (𝑓 “ 𝑛)) → 𝑓:ω–onto→𝐴)) |
6 | 5 | eximdv 1868 |
. . . 4
⊢ (𝐴 ≈ ℕ →
(∃𝑓(𝑓:ω–onto→𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓‘𝑘) ∈ (𝑓 “ 𝑛)) → ∃𝑓 𝑓:ω–onto→𝐴)) |
7 | 3, 6 | mpd 13 |
. . 3
⊢ (𝐴 ≈ ℕ →
∃𝑓 𝑓:ω–onto→𝐴) |
8 | | nnenom 10369 |
. . . . . 6
⊢ ℕ
≈ ω |
9 | | entr 6750 |
. . . . . 6
⊢ ((𝐴 ≈ ℕ ∧ ℕ
≈ ω) → 𝐴
≈ ω) |
10 | 8, 9 | mpan2 422 |
. . . . 5
⊢ (𝐴 ≈ ℕ → 𝐴 ≈
ω) |
11 | 10 | ensymd 6749 |
. . . 4
⊢ (𝐴 ≈ ℕ → ω
≈ 𝐴) |
12 | | endom 6729 |
. . . 4
⊢ (ω
≈ 𝐴 → ω
≼ 𝐴) |
13 | 11, 12 | syl 14 |
. . 3
⊢ (𝐴 ≈ ℕ → ω
≼ 𝐴) |
14 | 2, 7, 13 | 3jca 1167 |
. 2
⊢ (𝐴 ≈ ℕ →
(∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓 𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴)) |
15 | | simp1 987 |
. . 3
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓 𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
16 | | 3simpb 985 |
. . . 4
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓 𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴)) |
17 | | simp2 988 |
. . . 4
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓 𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) → ∃𝑓 𝑓:ω–onto→𝐴) |
18 | | simp2 988 |
. . . . . . . 8
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) → 𝑓:ω–onto→𝐴) |
19 | | simpl1 990 |
. . . . . . . . . . . 12
⊢
(((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
20 | | equequ1 1700 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑢 → (𝑥 = 𝑦 ↔ 𝑢 = 𝑦)) |
21 | 20 | dcbid 828 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑢 → (DECID 𝑥 = 𝑦 ↔ DECID 𝑢 = 𝑦)) |
22 | 21 | ralbidv 2466 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑢 → (∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ↔ ∀𝑦 ∈ 𝐴 DECID 𝑢 = 𝑦)) |
23 | 22 | cbvralv 2692 |
. . . . . . . . . . . 12
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ↔ ∀𝑢 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑢 = 𝑦) |
24 | 19, 23 | sylib 121 |
. . . . . . . . . . 11
⊢
(((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → ∀𝑢 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑢 = 𝑦) |
25 | | simpl3 992 |
. . . . . . . . . . 11
⊢
(((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → ω ≼ 𝐴) |
26 | | fof 5410 |
. . . . . . . . . . . . . 14
⊢ (𝑓:ω–onto→𝐴 → 𝑓:ω⟶𝐴) |
27 | | imassrn 4957 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 “ 𝑛) ⊆ ran 𝑓 |
28 | | frn 5346 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:ω⟶𝐴 → ran 𝑓 ⊆ 𝐴) |
29 | 27, 28 | sstrid 3153 |
. . . . . . . . . . . . . 14
⊢ (𝑓:ω⟶𝐴 → (𝑓 “ 𝑛) ⊆ 𝐴) |
30 | 26, 29 | syl 14 |
. . . . . . . . . . . . 13
⊢ (𝑓:ω–onto→𝐴 → (𝑓 “ 𝑛) ⊆ 𝐴) |
31 | 30 | ad2antrr 480 |
. . . . . . . . . . . 12
⊢ (((𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → (𝑓 “ 𝑛) ⊆ 𝐴) |
32 | 31 | 3adantl1 1143 |
. . . . . . . . . . 11
⊢
(((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → (𝑓 “ 𝑛) ⊆ 𝐴) |
33 | | simpl2 991 |
. . . . . . . . . . . . 13
⊢
(((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → 𝑓:ω–onto→𝐴) |
34 | | equequ1 1700 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑎 → (𝑥 = 𝑦 ↔ 𝑎 = 𝑦)) |
35 | 34 | dcbid 828 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑎 → (DECID 𝑥 = 𝑦 ↔ DECID 𝑎 = 𝑦)) |
36 | | equequ2 1701 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑏 → (𝑎 = 𝑦 ↔ 𝑎 = 𝑏)) |
37 | 36 | dcbid 828 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑏 → (DECID 𝑎 = 𝑦 ↔ DECID 𝑎 = 𝑏)) |
38 | 35, 37 | cbvral2v 2705 |
. . . . . . . . . . . . . 14
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ↔ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 DECID 𝑎 = 𝑏) |
39 | | ssralv 3206 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓 “ 𝑛) ⊆ 𝐴 → (∀𝑏 ∈ 𝐴 DECID 𝑎 = 𝑏 → ∀𝑏 ∈ (𝑓 “ 𝑛)DECID 𝑎 = 𝑏)) |
40 | 30, 39 | syl 14 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓:ω–onto→𝐴 → (∀𝑏 ∈ 𝐴 DECID 𝑎 = 𝑏 → ∀𝑏 ∈ (𝑓 “ 𝑛)DECID 𝑎 = 𝑏)) |
41 | 40 | ralimdv 2534 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:ω–onto→𝐴 → (∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 DECID 𝑎 = 𝑏 → ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ (𝑓 “ 𝑛)DECID 𝑎 = 𝑏)) |
42 | | ssralv 3206 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 “ 𝑛) ⊆ 𝐴 → (∀𝑎 ∈ 𝐴 ∀𝑏 ∈ (𝑓 “ 𝑛)DECID 𝑎 = 𝑏 → ∀𝑎 ∈ (𝑓 “ 𝑛)∀𝑏 ∈ (𝑓 “ 𝑛)DECID 𝑎 = 𝑏)) |
43 | 30, 41, 42 | sylsyld 58 |
. . . . . . . . . . . . . 14
⊢ (𝑓:ω–onto→𝐴 → (∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 DECID 𝑎 = 𝑏 → ∀𝑎 ∈ (𝑓 “ 𝑛)∀𝑏 ∈ (𝑓 “ 𝑛)DECID 𝑎 = 𝑏)) |
44 | 38, 43 | syl5bi 151 |
. . . . . . . . . . . . 13
⊢ (𝑓:ω–onto→𝐴 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 → ∀𝑎 ∈ (𝑓 “ 𝑛)∀𝑏 ∈ (𝑓 “ 𝑛)DECID 𝑎 = 𝑏)) |
45 | 33, 19, 44 | sylc 62 |
. . . . . . . . . . . 12
⊢
(((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → ∀𝑎 ∈ (𝑓 “ 𝑛)∀𝑏 ∈ (𝑓 “ 𝑛)DECID 𝑎 = 𝑏) |
46 | | simpr 109 |
. . . . . . . . . . . . . 14
⊢ (((𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → 𝑛 ∈ ω) |
47 | | fofun 5411 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓:ω–onto→𝐴 → Fun 𝑓) |
48 | 47 | ad2antrr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → Fun 𝑓) |
49 | | ordom 4584 |
. . . . . . . . . . . . . . . . . . 19
⊢ Ord
ω |
50 | | ordtr 4356 |
. . . . . . . . . . . . . . . . . . 19
⊢ (Ord
ω → Tr ω) |
51 | 49, 50 | ax-mp 5 |
. . . . . . . . . . . . . . . . . 18
⊢ Tr
ω |
52 | | trss 4089 |
. . . . . . . . . . . . . . . . . 18
⊢ (Tr
ω → (𝑛 ∈
ω → 𝑛 ⊆
ω)) |
53 | 51, 46, 52 | mpsyl 65 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → 𝑛 ⊆ ω) |
54 | 26 | fdmd 5344 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓:ω–onto→𝐴 → dom 𝑓 = ω) |
55 | 54 | ad2antrr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → dom 𝑓 = ω) |
56 | 53, 55 | sseqtrrd 3181 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → 𝑛 ⊆ dom 𝑓) |
57 | | fores 5419 |
. . . . . . . . . . . . . . . 16
⊢ ((Fun
𝑓 ∧ 𝑛 ⊆ dom 𝑓) → (𝑓 ↾ 𝑛):𝑛–onto→(𝑓 “ 𝑛)) |
58 | 48, 56, 57 | syl2anc 409 |
. . . . . . . . . . . . . . 15
⊢ (((𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → (𝑓 ↾ 𝑛):𝑛–onto→(𝑓 “ 𝑛)) |
59 | | vex 2729 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑓 ∈ V |
60 | 59 | resex 4925 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 ↾ 𝑛) ∈ V |
61 | | foeq1 5406 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔 = (𝑓 ↾ 𝑛) → (𝑔:𝑛–onto→(𝑓 “ 𝑛) ↔ (𝑓 ↾ 𝑛):𝑛–onto→(𝑓 “ 𝑛))) |
62 | 60, 61 | spcev 2821 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 ↾ 𝑛):𝑛–onto→(𝑓 “ 𝑛) → ∃𝑔 𝑔:𝑛–onto→(𝑓 “ 𝑛)) |
63 | 58, 62 | syl 14 |
. . . . . . . . . . . . . 14
⊢ (((𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → ∃𝑔 𝑔:𝑛–onto→(𝑓 “ 𝑛)) |
64 | | foeq2 5407 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 = 𝑛 → (𝑔:𝑚–onto→(𝑓 “ 𝑛) ↔ 𝑔:𝑛–onto→(𝑓 “ 𝑛))) |
65 | 64 | exbidv 1813 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = 𝑛 → (∃𝑔 𝑔:𝑚–onto→(𝑓 “ 𝑛) ↔ ∃𝑔 𝑔:𝑛–onto→(𝑓 “ 𝑛))) |
66 | 65 | rspcev 2830 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ ω ∧
∃𝑔 𝑔:𝑛–onto→(𝑓 “ 𝑛)) → ∃𝑚 ∈ ω ∃𝑔 𝑔:𝑚–onto→(𝑓 “ 𝑛)) |
67 | 46, 63, 66 | syl2anc 409 |
. . . . . . . . . . . . 13
⊢ (((𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → ∃𝑚 ∈ ω ∃𝑔 𝑔:𝑚–onto→(𝑓 “ 𝑛)) |
68 | 67 | 3adantl1 1143 |
. . . . . . . . . . . 12
⊢
(((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → ∃𝑚 ∈ ω ∃𝑔 𝑔:𝑚–onto→(𝑓 “ 𝑛)) |
69 | | fidcenum 6921 |
. . . . . . . . . . . 12
⊢ ((𝑓 “ 𝑛) ∈ Fin ↔ (∀𝑎 ∈ (𝑓 “ 𝑛)∀𝑏 ∈ (𝑓 “ 𝑛)DECID 𝑎 = 𝑏 ∧ ∃𝑚 ∈ ω ∃𝑔 𝑔:𝑚–onto→(𝑓 “ 𝑛))) |
70 | 45, 68, 69 | sylanbrc 414 |
. . . . . . . . . . 11
⊢
(((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → (𝑓 “ 𝑛) ∈ Fin) |
71 | 24, 25, 32, 70 | inffinp1 12362 |
. . . . . . . . . 10
⊢
(((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → ∃𝑢 ∈ 𝐴 ¬ 𝑢 ∈ (𝑓 “ 𝑛)) |
72 | | simprl 521 |
. . . . . . . . . . . 12
⊢
((((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) ∧ (𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ∈ (𝑓 “ 𝑛))) → 𝑢 ∈ 𝐴) |
73 | | foelrn 5721 |
. . . . . . . . . . . 12
⊢ ((𝑓:ω–onto→𝐴 ∧ 𝑢 ∈ 𝐴) → ∃𝑘 ∈ ω 𝑢 = (𝑓‘𝑘)) |
74 | 33, 72, 73 | syl2an2r 585 |
. . . . . . . . . . 11
⊢
((((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) ∧ (𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ∈ (𝑓 “ 𝑛))) → ∃𝑘 ∈ ω 𝑢 = (𝑓‘𝑘)) |
75 | | simpr 109 |
. . . . . . . . . . . . . 14
⊢
((((((∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) ∧ (𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ∈ (𝑓 “ 𝑛))) ∧ 𝑘 ∈ ω) ∧ 𝑢 = (𝑓‘𝑘)) → 𝑢 = (𝑓‘𝑘)) |
76 | | simprr 522 |
. . . . . . . . . . . . . . 15
⊢
((((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) ∧ (𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ∈ (𝑓 “ 𝑛))) → ¬ 𝑢 ∈ (𝑓 “ 𝑛)) |
77 | 76 | ad2antrr 480 |
. . . . . . . . . . . . . 14
⊢
((((((∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) ∧ (𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ∈ (𝑓 “ 𝑛))) ∧ 𝑘 ∈ ω) ∧ 𝑢 = (𝑓‘𝑘)) → ¬ 𝑢 ∈ (𝑓 “ 𝑛)) |
78 | 75, 77 | eqneltrrd 2263 |
. . . . . . . . . . . . 13
⊢
((((((∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) ∧ (𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ∈ (𝑓 “ 𝑛))) ∧ 𝑘 ∈ ω) ∧ 𝑢 = (𝑓‘𝑘)) → ¬ (𝑓‘𝑘) ∈ (𝑓 “ 𝑛)) |
79 | 78 | ex 114 |
. . . . . . . . . . . 12
⊢
(((((∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) ∧ (𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ∈ (𝑓 “ 𝑛))) ∧ 𝑘 ∈ ω) → (𝑢 = (𝑓‘𝑘) → ¬ (𝑓‘𝑘) ∈ (𝑓 “ 𝑛))) |
80 | 79 | reximdva 2568 |
. . . . . . . . . . 11
⊢
((((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) ∧ (𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ∈ (𝑓 “ 𝑛))) → (∃𝑘 ∈ ω 𝑢 = (𝑓‘𝑘) → ∃𝑘 ∈ ω ¬ (𝑓‘𝑘) ∈ (𝑓 “ 𝑛))) |
81 | 74, 80 | mpd 13 |
. . . . . . . . . 10
⊢
((((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) ∧ (𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ∈ (𝑓 “ 𝑛))) → ∃𝑘 ∈ ω ¬ (𝑓‘𝑘) ∈ (𝑓 “ 𝑛)) |
82 | 71, 81 | rexlimddv 2588 |
. . . . . . . . 9
⊢
(((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → ∃𝑘 ∈ ω ¬ (𝑓‘𝑘) ∈ (𝑓 “ 𝑛)) |
83 | 82 | ralrimiva 2539 |
. . . . . . . 8
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓‘𝑘) ∈ (𝑓 “ 𝑛)) |
84 | 18, 83 | jca 304 |
. . . . . . 7
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) → (𝑓:ω–onto→𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓‘𝑘) ∈ (𝑓 “ 𝑛))) |
85 | 84 | 3com23 1199 |
. . . . . 6
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴 ∧ 𝑓:ω–onto→𝐴) → (𝑓:ω–onto→𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓‘𝑘) ∈ (𝑓 “ 𝑛))) |
86 | 85 | 3expia 1195 |
. . . . 5
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴) → (𝑓:ω–onto→𝐴 → (𝑓:ω–onto→𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓‘𝑘) ∈ (𝑓 “ 𝑛)))) |
87 | 86 | eximdv 1868 |
. . . 4
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴) → (∃𝑓 𝑓:ω–onto→𝐴 → ∃𝑓(𝑓:ω–onto→𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓‘𝑘) ∈ (𝑓 “ 𝑛)))) |
88 | 16, 17, 87 | sylc 62 |
. . 3
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓 𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) → ∃𝑓(𝑓:ω–onto→𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓‘𝑘) ∈ (𝑓 “ 𝑛))) |
89 | 15, 88, 1 | sylanbrc 414 |
. 2
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓 𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) → 𝐴 ≈ ℕ) |
90 | 14, 89 | impbii 125 |
1
⊢ (𝐴 ≈ ℕ ↔
(∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓 𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴)) |