ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctinf GIF version

Theorem ctinf 12647
Description: A set is countably infinite if and only if it has decidable equality, is countable, and is infinite. (Contributed by Jim Kingdon, 7-Aug-2023.)
Assertion
Ref Expression
ctinf (𝐴 ≈ ℕ ↔ (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓 𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴))
Distinct variable group:   𝐴,𝑓,𝑦,𝑥

Proof of Theorem ctinf
Dummy variables 𝑎 𝑏 𝑛 𝑘 𝑢 𝑔 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ctinfom 12645 . . . 4 (𝐴 ≈ ℕ ↔ (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))))
21simplbi 274 . . 3 (𝐴 ≈ ℕ → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
31simprbi 275 . . . 4 (𝐴 ≈ ℕ → ∃𝑓(𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛)))
4 simpl 109 . . . . . 6 ((𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛)) → 𝑓:ω–onto𝐴)
54a1i 9 . . . . 5 (𝐴 ≈ ℕ → ((𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛)) → 𝑓:ω–onto𝐴))
65eximdv 1894 . . . 4 (𝐴 ≈ ℕ → (∃𝑓(𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛)) → ∃𝑓 𝑓:ω–onto𝐴))
73, 6mpd 13 . . 3 (𝐴 ≈ ℕ → ∃𝑓 𝑓:ω–onto𝐴)
8 nnenom 10526 . . . . . 6 ℕ ≈ ω
9 entr 6843 . . . . . 6 ((𝐴 ≈ ℕ ∧ ℕ ≈ ω) → 𝐴 ≈ ω)
108, 9mpan2 425 . . . . 5 (𝐴 ≈ ℕ → 𝐴 ≈ ω)
1110ensymd 6842 . . . 4 (𝐴 ≈ ℕ → ω ≈ 𝐴)
12 endom 6822 . . . 4 (ω ≈ 𝐴 → ω ≼ 𝐴)
1311, 12syl 14 . . 3 (𝐴 ≈ ℕ → ω ≼ 𝐴)
142, 7, 133jca 1179 . 2 (𝐴 ≈ ℕ → (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓 𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴))
15 simp1 999 . . 3 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓 𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
16 3simpb 997 . . . 4 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓 𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) → (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴))
17 simp2 1000 . . . 4 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓 𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) → ∃𝑓 𝑓:ω–onto𝐴)
18 simp2 1000 . . . . . . . 8 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) → 𝑓:ω–onto𝐴)
19 simpl1 1002 . . . . . . . . . . . 12 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
20 equequ1 1726 . . . . . . . . . . . . . . 15 (𝑥 = 𝑢 → (𝑥 = 𝑦𝑢 = 𝑦))
2120dcbid 839 . . . . . . . . . . . . . 14 (𝑥 = 𝑢 → (DECID 𝑥 = 𝑦DECID 𝑢 = 𝑦))
2221ralbidv 2497 . . . . . . . . . . . . 13 (𝑥 = 𝑢 → (∀𝑦𝐴 DECID 𝑥 = 𝑦 ↔ ∀𝑦𝐴 DECID 𝑢 = 𝑦))
2322cbvralv 2729 . . . . . . . . . . . 12 (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ↔ ∀𝑢𝐴𝑦𝐴 DECID 𝑢 = 𝑦)
2419, 23sylib 122 . . . . . . . . . . 11 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → ∀𝑢𝐴𝑦𝐴 DECID 𝑢 = 𝑦)
25 simpl3 1004 . . . . . . . . . . 11 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → ω ≼ 𝐴)
26 fof 5480 . . . . . . . . . . . . . 14 (𝑓:ω–onto𝐴𝑓:ω⟶𝐴)
27 imassrn 5020 . . . . . . . . . . . . . . 15 (𝑓𝑛) ⊆ ran 𝑓
28 frn 5416 . . . . . . . . . . . . . . 15 (𝑓:ω⟶𝐴 → ran 𝑓𝐴)
2927, 28sstrid 3194 . . . . . . . . . . . . . 14 (𝑓:ω⟶𝐴 → (𝑓𝑛) ⊆ 𝐴)
3026, 29syl 14 . . . . . . . . . . . . 13 (𝑓:ω–onto𝐴 → (𝑓𝑛) ⊆ 𝐴)
3130ad2antrr 488 . . . . . . . . . . . 12 (((𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → (𝑓𝑛) ⊆ 𝐴)
32313adantl1 1155 . . . . . . . . . . 11 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → (𝑓𝑛) ⊆ 𝐴)
33 simpl2 1003 . . . . . . . . . . . . 13 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → 𝑓:ω–onto𝐴)
34 equequ1 1726 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑎 → (𝑥 = 𝑦𝑎 = 𝑦))
3534dcbid 839 . . . . . . . . . . . . . . 15 (𝑥 = 𝑎 → (DECID 𝑥 = 𝑦DECID 𝑎 = 𝑦))
36 equequ2 1727 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑏 → (𝑎 = 𝑦𝑎 = 𝑏))
3736dcbid 839 . . . . . . . . . . . . . . 15 (𝑦 = 𝑏 → (DECID 𝑎 = 𝑦DECID 𝑎 = 𝑏))
3835, 37cbvral2v 2742 . . . . . . . . . . . . . 14 (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ↔ ∀𝑎𝐴𝑏𝐴 DECID 𝑎 = 𝑏)
39 ssralv 3247 . . . . . . . . . . . . . . . . 17 ((𝑓𝑛) ⊆ 𝐴 → (∀𝑏𝐴 DECID 𝑎 = 𝑏 → ∀𝑏 ∈ (𝑓𝑛)DECID 𝑎 = 𝑏))
4030, 39syl 14 . . . . . . . . . . . . . . . 16 (𝑓:ω–onto𝐴 → (∀𝑏𝐴 DECID 𝑎 = 𝑏 → ∀𝑏 ∈ (𝑓𝑛)DECID 𝑎 = 𝑏))
4140ralimdv 2565 . . . . . . . . . . . . . . 15 (𝑓:ω–onto𝐴 → (∀𝑎𝐴𝑏𝐴 DECID 𝑎 = 𝑏 → ∀𝑎𝐴𝑏 ∈ (𝑓𝑛)DECID 𝑎 = 𝑏))
42 ssralv 3247 . . . . . . . . . . . . . . 15 ((𝑓𝑛) ⊆ 𝐴 → (∀𝑎𝐴𝑏 ∈ (𝑓𝑛)DECID 𝑎 = 𝑏 → ∀𝑎 ∈ (𝑓𝑛)∀𝑏 ∈ (𝑓𝑛)DECID 𝑎 = 𝑏))
4330, 41, 42sylsyld 58 . . . . . . . . . . . . . 14 (𝑓:ω–onto𝐴 → (∀𝑎𝐴𝑏𝐴 DECID 𝑎 = 𝑏 → ∀𝑎 ∈ (𝑓𝑛)∀𝑏 ∈ (𝑓𝑛)DECID 𝑎 = 𝑏))
4438, 43biimtrid 152 . . . . . . . . . . . . 13 (𝑓:ω–onto𝐴 → (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 → ∀𝑎 ∈ (𝑓𝑛)∀𝑏 ∈ (𝑓𝑛)DECID 𝑎 = 𝑏))
4533, 19, 44sylc 62 . . . . . . . . . . . 12 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → ∀𝑎 ∈ (𝑓𝑛)∀𝑏 ∈ (𝑓𝑛)DECID 𝑎 = 𝑏)
46 simpr 110 . . . . . . . . . . . . . 14 (((𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → 𝑛 ∈ ω)
47 fofun 5481 . . . . . . . . . . . . . . . . 17 (𝑓:ω–onto𝐴 → Fun 𝑓)
4847ad2antrr 488 . . . . . . . . . . . . . . . 16 (((𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → Fun 𝑓)
49 ordom 4643 . . . . . . . . . . . . . . . . . . 19 Ord ω
50 ordtr 4413 . . . . . . . . . . . . . . . . . . 19 (Ord ω → Tr ω)
5149, 50ax-mp 5 . . . . . . . . . . . . . . . . . 18 Tr ω
52 trss 4140 . . . . . . . . . . . . . . . . . 18 (Tr ω → (𝑛 ∈ ω → 𝑛 ⊆ ω))
5351, 46, 52mpsyl 65 . . . . . . . . . . . . . . . . 17 (((𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → 𝑛 ⊆ ω)
5426fdmd 5414 . . . . . . . . . . . . . . . . . 18 (𝑓:ω–onto𝐴 → dom 𝑓 = ω)
5554ad2antrr 488 . . . . . . . . . . . . . . . . 17 (((𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → dom 𝑓 = ω)
5653, 55sseqtrrd 3222 . . . . . . . . . . . . . . . 16 (((𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → 𝑛 ⊆ dom 𝑓)
57 fores 5490 . . . . . . . . . . . . . . . 16 ((Fun 𝑓𝑛 ⊆ dom 𝑓) → (𝑓𝑛):𝑛onto→(𝑓𝑛))
5848, 56, 57syl2anc 411 . . . . . . . . . . . . . . 15 (((𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → (𝑓𝑛):𝑛onto→(𝑓𝑛))
59 vex 2766 . . . . . . . . . . . . . . . . 17 𝑓 ∈ V
6059resex 4987 . . . . . . . . . . . . . . . 16 (𝑓𝑛) ∈ V
61 foeq1 5476 . . . . . . . . . . . . . . . 16 (𝑔 = (𝑓𝑛) → (𝑔:𝑛onto→(𝑓𝑛) ↔ (𝑓𝑛):𝑛onto→(𝑓𝑛)))
6260, 61spcev 2859 . . . . . . . . . . . . . . 15 ((𝑓𝑛):𝑛onto→(𝑓𝑛) → ∃𝑔 𝑔:𝑛onto→(𝑓𝑛))
6358, 62syl 14 . . . . . . . . . . . . . 14 (((𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → ∃𝑔 𝑔:𝑛onto→(𝑓𝑛))
64 foeq2 5477 . . . . . . . . . . . . . . . 16 (𝑚 = 𝑛 → (𝑔:𝑚onto→(𝑓𝑛) ↔ 𝑔:𝑛onto→(𝑓𝑛)))
6564exbidv 1839 . . . . . . . . . . . . . . 15 (𝑚 = 𝑛 → (∃𝑔 𝑔:𝑚onto→(𝑓𝑛) ↔ ∃𝑔 𝑔:𝑛onto→(𝑓𝑛)))
6665rspcev 2868 . . . . . . . . . . . . . 14 ((𝑛 ∈ ω ∧ ∃𝑔 𝑔:𝑛onto→(𝑓𝑛)) → ∃𝑚 ∈ ω ∃𝑔 𝑔:𝑚onto→(𝑓𝑛))
6746, 63, 66syl2anc 411 . . . . . . . . . . . . 13 (((𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → ∃𝑚 ∈ ω ∃𝑔 𝑔:𝑚onto→(𝑓𝑛))
68673adantl1 1155 . . . . . . . . . . . 12 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → ∃𝑚 ∈ ω ∃𝑔 𝑔:𝑚onto→(𝑓𝑛))
69 fidcenum 7022 . . . . . . . . . . . 12 ((𝑓𝑛) ∈ Fin ↔ (∀𝑎 ∈ (𝑓𝑛)∀𝑏 ∈ (𝑓𝑛)DECID 𝑎 = 𝑏 ∧ ∃𝑚 ∈ ω ∃𝑔 𝑔:𝑚onto→(𝑓𝑛)))
7045, 68, 69sylanbrc 417 . . . . . . . . . . 11 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → (𝑓𝑛) ∈ Fin)
7124, 25, 32, 70inffinp1 12646 . . . . . . . . . 10 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → ∃𝑢𝐴 ¬ 𝑢 ∈ (𝑓𝑛))
72 simprl 529 . . . . . . . . . . . 12 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) ∧ (𝑢𝐴 ∧ ¬ 𝑢 ∈ (𝑓𝑛))) → 𝑢𝐴)
73 foelrn 5799 . . . . . . . . . . . 12 ((𝑓:ω–onto𝐴𝑢𝐴) → ∃𝑘 ∈ ω 𝑢 = (𝑓𝑘))
7433, 72, 73syl2an2r 595 . . . . . . . . . . 11 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) ∧ (𝑢𝐴 ∧ ¬ 𝑢 ∈ (𝑓𝑛))) → ∃𝑘 ∈ ω 𝑢 = (𝑓𝑘))
75 simpr 110 . . . . . . . . . . . . . 14 ((((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) ∧ (𝑢𝐴 ∧ ¬ 𝑢 ∈ (𝑓𝑛))) ∧ 𝑘 ∈ ω) ∧ 𝑢 = (𝑓𝑘)) → 𝑢 = (𝑓𝑘))
76 simprr 531 . . . . . . . . . . . . . . 15 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) ∧ (𝑢𝐴 ∧ ¬ 𝑢 ∈ (𝑓𝑛))) → ¬ 𝑢 ∈ (𝑓𝑛))
7776ad2antrr 488 . . . . . . . . . . . . . 14 ((((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) ∧ (𝑢𝐴 ∧ ¬ 𝑢 ∈ (𝑓𝑛))) ∧ 𝑘 ∈ ω) ∧ 𝑢 = (𝑓𝑘)) → ¬ 𝑢 ∈ (𝑓𝑛))
7875, 77eqneltrrd 2293 . . . . . . . . . . . . 13 ((((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) ∧ (𝑢𝐴 ∧ ¬ 𝑢 ∈ (𝑓𝑛))) ∧ 𝑘 ∈ ω) ∧ 𝑢 = (𝑓𝑘)) → ¬ (𝑓𝑘) ∈ (𝑓𝑛))
7978ex 115 . . . . . . . . . . . 12 (((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) ∧ (𝑢𝐴 ∧ ¬ 𝑢 ∈ (𝑓𝑛))) ∧ 𝑘 ∈ ω) → (𝑢 = (𝑓𝑘) → ¬ (𝑓𝑘) ∈ (𝑓𝑛)))
8079reximdva 2599 . . . . . . . . . . 11 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) ∧ (𝑢𝐴 ∧ ¬ 𝑢 ∈ (𝑓𝑛))) → (∃𝑘 ∈ ω 𝑢 = (𝑓𝑘) → ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛)))
8174, 80mpd 13 . . . . . . . . . 10 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) ∧ (𝑢𝐴 ∧ ¬ 𝑢 ∈ (𝑓𝑛))) → ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))
8271, 81rexlimddv 2619 . . . . . . . . 9 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))
8382ralrimiva 2570 . . . . . . . 8 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))
8418, 83jca 306 . . . . . . 7 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) → (𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛)))
85843com23 1211 . . . . . 6 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝑓:ω–onto𝐴) → (𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛)))
86853expia 1207 . . . . 5 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴) → (𝑓:ω–onto𝐴 → (𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))))
8786eximdv 1894 . . . 4 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴) → (∃𝑓 𝑓:ω–onto𝐴 → ∃𝑓(𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))))
8816, 17, 87sylc 62 . . 3 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓 𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) → ∃𝑓(𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛)))
8915, 88, 1sylanbrc 417 . 2 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓 𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) → 𝐴 ≈ ℕ)
9014, 89impbii 126 1 (𝐴 ≈ ℕ ↔ (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓 𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  DECID wdc 835  w3a 980   = wceq 1364  wex 1506  wcel 2167  wral 2475  wrex 2476  wss 3157   class class class wbr 4033  Tr wtr 4131  Ord word 4397  ωcom 4626  dom cdm 4663  ran crn 4664  cres 4665  cima 4666  Fun wfun 5252  wf 5254  ontowfo 5256  cfv 5258  cen 6797  cdom 6798  Fincfn 6799  cn 8990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-1o 6474  df-er 6592  df-pm 6710  df-en 6800  df-dom 6801  df-fin 6802  df-dju 7104  df-inl 7113  df-inr 7114  df-case 7150  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-fz 10084  df-seqfrec 10540
This theorem is referenced by:  qnnen  12648  unbendc  12671  nnnninfen  15665
  Copyright terms: Public domain W3C validator