ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctinf GIF version

Theorem ctinf 12414
Description: A set is countably infinite if and only if it has decidable equality, is countable, and is infinite. (Contributed by Jim Kingdon, 7-Aug-2023.)
Assertion
Ref Expression
ctinf (𝐴 ≈ ℕ ↔ (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓 𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴))
Distinct variable group:   𝐴,𝑓,𝑦,𝑥

Proof of Theorem ctinf
Dummy variables 𝑎 𝑏 𝑛 𝑘 𝑢 𝑔 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ctinfom 12412 . . . 4 (𝐴 ≈ ℕ ↔ (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))))
21simplbi 274 . . 3 (𝐴 ≈ ℕ → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
31simprbi 275 . . . 4 (𝐴 ≈ ℕ → ∃𝑓(𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛)))
4 simpl 109 . . . . . 6 ((𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛)) → 𝑓:ω–onto𝐴)
54a1i 9 . . . . 5 (𝐴 ≈ ℕ → ((𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛)) → 𝑓:ω–onto𝐴))
65eximdv 1880 . . . 4 (𝐴 ≈ ℕ → (∃𝑓(𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛)) → ∃𝑓 𝑓:ω–onto𝐴))
73, 6mpd 13 . . 3 (𝐴 ≈ ℕ → ∃𝑓 𝑓:ω–onto𝐴)
8 nnenom 10420 . . . . . 6 ℕ ≈ ω
9 entr 6778 . . . . . 6 ((𝐴 ≈ ℕ ∧ ℕ ≈ ω) → 𝐴 ≈ ω)
108, 9mpan2 425 . . . . 5 (𝐴 ≈ ℕ → 𝐴 ≈ ω)
1110ensymd 6777 . . . 4 (𝐴 ≈ ℕ → ω ≈ 𝐴)
12 endom 6757 . . . 4 (ω ≈ 𝐴 → ω ≼ 𝐴)
1311, 12syl 14 . . 3 (𝐴 ≈ ℕ → ω ≼ 𝐴)
142, 7, 133jca 1177 . 2 (𝐴 ≈ ℕ → (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓 𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴))
15 simp1 997 . . 3 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓 𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
16 3simpb 995 . . . 4 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓 𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) → (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴))
17 simp2 998 . . . 4 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓 𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) → ∃𝑓 𝑓:ω–onto𝐴)
18 simp2 998 . . . . . . . 8 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) → 𝑓:ω–onto𝐴)
19 simpl1 1000 . . . . . . . . . . . 12 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
20 equequ1 1712 . . . . . . . . . . . . . . 15 (𝑥 = 𝑢 → (𝑥 = 𝑦𝑢 = 𝑦))
2120dcbid 838 . . . . . . . . . . . . . 14 (𝑥 = 𝑢 → (DECID 𝑥 = 𝑦DECID 𝑢 = 𝑦))
2221ralbidv 2477 . . . . . . . . . . . . 13 (𝑥 = 𝑢 → (∀𝑦𝐴 DECID 𝑥 = 𝑦 ↔ ∀𝑦𝐴 DECID 𝑢 = 𝑦))
2322cbvralv 2703 . . . . . . . . . . . 12 (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ↔ ∀𝑢𝐴𝑦𝐴 DECID 𝑢 = 𝑦)
2419, 23sylib 122 . . . . . . . . . . 11 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → ∀𝑢𝐴𝑦𝐴 DECID 𝑢 = 𝑦)
25 simpl3 1002 . . . . . . . . . . 11 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → ω ≼ 𝐴)
26 fof 5434 . . . . . . . . . . . . . 14 (𝑓:ω–onto𝐴𝑓:ω⟶𝐴)
27 imassrn 4977 . . . . . . . . . . . . . . 15 (𝑓𝑛) ⊆ ran 𝑓
28 frn 5370 . . . . . . . . . . . . . . 15 (𝑓:ω⟶𝐴 → ran 𝑓𝐴)
2927, 28sstrid 3166 . . . . . . . . . . . . . 14 (𝑓:ω⟶𝐴 → (𝑓𝑛) ⊆ 𝐴)
3026, 29syl 14 . . . . . . . . . . . . 13 (𝑓:ω–onto𝐴 → (𝑓𝑛) ⊆ 𝐴)
3130ad2antrr 488 . . . . . . . . . . . 12 (((𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → (𝑓𝑛) ⊆ 𝐴)
32313adantl1 1153 . . . . . . . . . . 11 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → (𝑓𝑛) ⊆ 𝐴)
33 simpl2 1001 . . . . . . . . . . . . 13 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → 𝑓:ω–onto𝐴)
34 equequ1 1712 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑎 → (𝑥 = 𝑦𝑎 = 𝑦))
3534dcbid 838 . . . . . . . . . . . . . . 15 (𝑥 = 𝑎 → (DECID 𝑥 = 𝑦DECID 𝑎 = 𝑦))
36 equequ2 1713 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑏 → (𝑎 = 𝑦𝑎 = 𝑏))
3736dcbid 838 . . . . . . . . . . . . . . 15 (𝑦 = 𝑏 → (DECID 𝑎 = 𝑦DECID 𝑎 = 𝑏))
3835, 37cbvral2v 2716 . . . . . . . . . . . . . 14 (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ↔ ∀𝑎𝐴𝑏𝐴 DECID 𝑎 = 𝑏)
39 ssralv 3219 . . . . . . . . . . . . . . . . 17 ((𝑓𝑛) ⊆ 𝐴 → (∀𝑏𝐴 DECID 𝑎 = 𝑏 → ∀𝑏 ∈ (𝑓𝑛)DECID 𝑎 = 𝑏))
4030, 39syl 14 . . . . . . . . . . . . . . . 16 (𝑓:ω–onto𝐴 → (∀𝑏𝐴 DECID 𝑎 = 𝑏 → ∀𝑏 ∈ (𝑓𝑛)DECID 𝑎 = 𝑏))
4140ralimdv 2545 . . . . . . . . . . . . . . 15 (𝑓:ω–onto𝐴 → (∀𝑎𝐴𝑏𝐴 DECID 𝑎 = 𝑏 → ∀𝑎𝐴𝑏 ∈ (𝑓𝑛)DECID 𝑎 = 𝑏))
42 ssralv 3219 . . . . . . . . . . . . . . 15 ((𝑓𝑛) ⊆ 𝐴 → (∀𝑎𝐴𝑏 ∈ (𝑓𝑛)DECID 𝑎 = 𝑏 → ∀𝑎 ∈ (𝑓𝑛)∀𝑏 ∈ (𝑓𝑛)DECID 𝑎 = 𝑏))
4330, 41, 42sylsyld 58 . . . . . . . . . . . . . 14 (𝑓:ω–onto𝐴 → (∀𝑎𝐴𝑏𝐴 DECID 𝑎 = 𝑏 → ∀𝑎 ∈ (𝑓𝑛)∀𝑏 ∈ (𝑓𝑛)DECID 𝑎 = 𝑏))
4438, 43biimtrid 152 . . . . . . . . . . . . 13 (𝑓:ω–onto𝐴 → (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 → ∀𝑎 ∈ (𝑓𝑛)∀𝑏 ∈ (𝑓𝑛)DECID 𝑎 = 𝑏))
4533, 19, 44sylc 62 . . . . . . . . . . . 12 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → ∀𝑎 ∈ (𝑓𝑛)∀𝑏 ∈ (𝑓𝑛)DECID 𝑎 = 𝑏)
46 simpr 110 . . . . . . . . . . . . . 14 (((𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → 𝑛 ∈ ω)
47 fofun 5435 . . . . . . . . . . . . . . . . 17 (𝑓:ω–onto𝐴 → Fun 𝑓)
4847ad2antrr 488 . . . . . . . . . . . . . . . 16 (((𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → Fun 𝑓)
49 ordom 4603 . . . . . . . . . . . . . . . . . . 19 Ord ω
50 ordtr 4375 . . . . . . . . . . . . . . . . . . 19 (Ord ω → Tr ω)
5149, 50ax-mp 5 . . . . . . . . . . . . . . . . . 18 Tr ω
52 trss 4107 . . . . . . . . . . . . . . . . . 18 (Tr ω → (𝑛 ∈ ω → 𝑛 ⊆ ω))
5351, 46, 52mpsyl 65 . . . . . . . . . . . . . . . . 17 (((𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → 𝑛 ⊆ ω)
5426fdmd 5368 . . . . . . . . . . . . . . . . . 18 (𝑓:ω–onto𝐴 → dom 𝑓 = ω)
5554ad2antrr 488 . . . . . . . . . . . . . . . . 17 (((𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → dom 𝑓 = ω)
5653, 55sseqtrrd 3194 . . . . . . . . . . . . . . . 16 (((𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → 𝑛 ⊆ dom 𝑓)
57 fores 5443 . . . . . . . . . . . . . . . 16 ((Fun 𝑓𝑛 ⊆ dom 𝑓) → (𝑓𝑛):𝑛onto→(𝑓𝑛))
5848, 56, 57syl2anc 411 . . . . . . . . . . . . . . 15 (((𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → (𝑓𝑛):𝑛onto→(𝑓𝑛))
59 vex 2740 . . . . . . . . . . . . . . . . 17 𝑓 ∈ V
6059resex 4944 . . . . . . . . . . . . . . . 16 (𝑓𝑛) ∈ V
61 foeq1 5430 . . . . . . . . . . . . . . . 16 (𝑔 = (𝑓𝑛) → (𝑔:𝑛onto→(𝑓𝑛) ↔ (𝑓𝑛):𝑛onto→(𝑓𝑛)))
6260, 61spcev 2832 . . . . . . . . . . . . . . 15 ((𝑓𝑛):𝑛onto→(𝑓𝑛) → ∃𝑔 𝑔:𝑛onto→(𝑓𝑛))
6358, 62syl 14 . . . . . . . . . . . . . 14 (((𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → ∃𝑔 𝑔:𝑛onto→(𝑓𝑛))
64 foeq2 5431 . . . . . . . . . . . . . . . 16 (𝑚 = 𝑛 → (𝑔:𝑚onto→(𝑓𝑛) ↔ 𝑔:𝑛onto→(𝑓𝑛)))
6564exbidv 1825 . . . . . . . . . . . . . . 15 (𝑚 = 𝑛 → (∃𝑔 𝑔:𝑚onto→(𝑓𝑛) ↔ ∃𝑔 𝑔:𝑛onto→(𝑓𝑛)))
6665rspcev 2841 . . . . . . . . . . . . . 14 ((𝑛 ∈ ω ∧ ∃𝑔 𝑔:𝑛onto→(𝑓𝑛)) → ∃𝑚 ∈ ω ∃𝑔 𝑔:𝑚onto→(𝑓𝑛))
6746, 63, 66syl2anc 411 . . . . . . . . . . . . 13 (((𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → ∃𝑚 ∈ ω ∃𝑔 𝑔:𝑚onto→(𝑓𝑛))
68673adantl1 1153 . . . . . . . . . . . 12 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → ∃𝑚 ∈ ω ∃𝑔 𝑔:𝑚onto→(𝑓𝑛))
69 fidcenum 6949 . . . . . . . . . . . 12 ((𝑓𝑛) ∈ Fin ↔ (∀𝑎 ∈ (𝑓𝑛)∀𝑏 ∈ (𝑓𝑛)DECID 𝑎 = 𝑏 ∧ ∃𝑚 ∈ ω ∃𝑔 𝑔:𝑚onto→(𝑓𝑛)))
7045, 68, 69sylanbrc 417 . . . . . . . . . . 11 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → (𝑓𝑛) ∈ Fin)
7124, 25, 32, 70inffinp1 12413 . . . . . . . . . 10 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → ∃𝑢𝐴 ¬ 𝑢 ∈ (𝑓𝑛))
72 simprl 529 . . . . . . . . . . . 12 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) ∧ (𝑢𝐴 ∧ ¬ 𝑢 ∈ (𝑓𝑛))) → 𝑢𝐴)
73 foelrn 5748 . . . . . . . . . . . 12 ((𝑓:ω–onto𝐴𝑢𝐴) → ∃𝑘 ∈ ω 𝑢 = (𝑓𝑘))
7433, 72, 73syl2an2r 595 . . . . . . . . . . 11 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) ∧ (𝑢𝐴 ∧ ¬ 𝑢 ∈ (𝑓𝑛))) → ∃𝑘 ∈ ω 𝑢 = (𝑓𝑘))
75 simpr 110 . . . . . . . . . . . . . 14 ((((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) ∧ (𝑢𝐴 ∧ ¬ 𝑢 ∈ (𝑓𝑛))) ∧ 𝑘 ∈ ω) ∧ 𝑢 = (𝑓𝑘)) → 𝑢 = (𝑓𝑘))
76 simprr 531 . . . . . . . . . . . . . . 15 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) ∧ (𝑢𝐴 ∧ ¬ 𝑢 ∈ (𝑓𝑛))) → ¬ 𝑢 ∈ (𝑓𝑛))
7776ad2antrr 488 . . . . . . . . . . . . . 14 ((((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) ∧ (𝑢𝐴 ∧ ¬ 𝑢 ∈ (𝑓𝑛))) ∧ 𝑘 ∈ ω) ∧ 𝑢 = (𝑓𝑘)) → ¬ 𝑢 ∈ (𝑓𝑛))
7875, 77eqneltrrd 2274 . . . . . . . . . . . . 13 ((((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) ∧ (𝑢𝐴 ∧ ¬ 𝑢 ∈ (𝑓𝑛))) ∧ 𝑘 ∈ ω) ∧ 𝑢 = (𝑓𝑘)) → ¬ (𝑓𝑘) ∈ (𝑓𝑛))
7978ex 115 . . . . . . . . . . . 12 (((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) ∧ (𝑢𝐴 ∧ ¬ 𝑢 ∈ (𝑓𝑛))) ∧ 𝑘 ∈ ω) → (𝑢 = (𝑓𝑘) → ¬ (𝑓𝑘) ∈ (𝑓𝑛)))
8079reximdva 2579 . . . . . . . . . . 11 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) ∧ (𝑢𝐴 ∧ ¬ 𝑢 ∈ (𝑓𝑛))) → (∃𝑘 ∈ ω 𝑢 = (𝑓𝑘) → ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛)))
8174, 80mpd 13 . . . . . . . . . 10 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) ∧ (𝑢𝐴 ∧ ¬ 𝑢 ∈ (𝑓𝑛))) → ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))
8271, 81rexlimddv 2599 . . . . . . . . 9 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))
8382ralrimiva 2550 . . . . . . . 8 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))
8418, 83jca 306 . . . . . . 7 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) → (𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛)))
85843com23 1209 . . . . . 6 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝑓:ω–onto𝐴) → (𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛)))
86853expia 1205 . . . . 5 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴) → (𝑓:ω–onto𝐴 → (𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))))
8786eximdv 1880 . . . 4 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴) → (∃𝑓 𝑓:ω–onto𝐴 → ∃𝑓(𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))))
8816, 17, 87sylc 62 . . 3 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓 𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) → ∃𝑓(𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛)))
8915, 88, 1sylanbrc 417 . 2 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓 𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) → 𝐴 ≈ ℕ)
9014, 89impbii 126 1 (𝐴 ≈ ℕ ↔ (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓 𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  DECID wdc 834  w3a 978   = wceq 1353  wex 1492  wcel 2148  wral 2455  wrex 2456  wss 3129   class class class wbr 4000  Tr wtr 4098  Ord word 4359  ωcom 4586  dom cdm 4623  ran crn 4624  cres 4625  cima 4626  Fun wfun 5206  wf 5208  ontowfo 5210  cfv 5212  cen 6732  cdom 6733  Fincfn 6734  cn 8908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-addcom 7902  ax-addass 7904  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-0id 7910  ax-rnegex 7911  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-ltadd 7918
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-1o 6411  df-er 6529  df-pm 6645  df-en 6735  df-dom 6736  df-fin 6737  df-dju 7031  df-inl 7040  df-inr 7041  df-case 7077  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-inn 8909  df-n0 9166  df-z 9243  df-uz 9518  df-fz 9996  df-seqfrec 10432
This theorem is referenced by:  qnnen  12415  unbendc  12438
  Copyright terms: Public domain W3C validator