ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctinf GIF version

Theorem ctinf 12845
Description: A set is countably infinite if and only if it has decidable equality, is countable, and is infinite. (Contributed by Jim Kingdon, 7-Aug-2023.)
Assertion
Ref Expression
ctinf (𝐴 ≈ ℕ ↔ (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓 𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴))
Distinct variable group:   𝐴,𝑓,𝑦,𝑥

Proof of Theorem ctinf
Dummy variables 𝑎 𝑏 𝑛 𝑘 𝑢 𝑔 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ctinfom 12843 . . . 4 (𝐴 ≈ ℕ ↔ (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))))
21simplbi 274 . . 3 (𝐴 ≈ ℕ → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
31simprbi 275 . . . 4 (𝐴 ≈ ℕ → ∃𝑓(𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛)))
4 simpl 109 . . . . . 6 ((𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛)) → 𝑓:ω–onto𝐴)
54a1i 9 . . . . 5 (𝐴 ≈ ℕ → ((𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛)) → 𝑓:ω–onto𝐴))
65eximdv 1904 . . . 4 (𝐴 ≈ ℕ → (∃𝑓(𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛)) → ∃𝑓 𝑓:ω–onto𝐴))
73, 6mpd 13 . . 3 (𝐴 ≈ ℕ → ∃𝑓 𝑓:ω–onto𝐴)
8 nnenom 10586 . . . . . 6 ℕ ≈ ω
9 entr 6883 . . . . . 6 ((𝐴 ≈ ℕ ∧ ℕ ≈ ω) → 𝐴 ≈ ω)
108, 9mpan2 425 . . . . 5 (𝐴 ≈ ℕ → 𝐴 ≈ ω)
1110ensymd 6882 . . . 4 (𝐴 ≈ ℕ → ω ≈ 𝐴)
12 endom 6861 . . . 4 (ω ≈ 𝐴 → ω ≼ 𝐴)
1311, 12syl 14 . . 3 (𝐴 ≈ ℕ → ω ≼ 𝐴)
142, 7, 133jca 1180 . 2 (𝐴 ≈ ℕ → (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓 𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴))
15 simp1 1000 . . 3 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓 𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
16 3simpb 998 . . . 4 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓 𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) → (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴))
17 simp2 1001 . . . 4 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓 𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) → ∃𝑓 𝑓:ω–onto𝐴)
18 simp2 1001 . . . . . . . 8 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) → 𝑓:ω–onto𝐴)
19 simpl1 1003 . . . . . . . . . . . 12 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
20 equequ1 1736 . . . . . . . . . . . . . . 15 (𝑥 = 𝑢 → (𝑥 = 𝑦𝑢 = 𝑦))
2120dcbid 840 . . . . . . . . . . . . . 14 (𝑥 = 𝑢 → (DECID 𝑥 = 𝑦DECID 𝑢 = 𝑦))
2221ralbidv 2507 . . . . . . . . . . . . 13 (𝑥 = 𝑢 → (∀𝑦𝐴 DECID 𝑥 = 𝑦 ↔ ∀𝑦𝐴 DECID 𝑢 = 𝑦))
2322cbvralv 2739 . . . . . . . . . . . 12 (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ↔ ∀𝑢𝐴𝑦𝐴 DECID 𝑢 = 𝑦)
2419, 23sylib 122 . . . . . . . . . . 11 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → ∀𝑢𝐴𝑦𝐴 DECID 𝑢 = 𝑦)
25 simpl3 1005 . . . . . . . . . . 11 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → ω ≼ 𝐴)
26 fof 5505 . . . . . . . . . . . . . 14 (𝑓:ω–onto𝐴𝑓:ω⟶𝐴)
27 imassrn 5038 . . . . . . . . . . . . . . 15 (𝑓𝑛) ⊆ ran 𝑓
28 frn 5440 . . . . . . . . . . . . . . 15 (𝑓:ω⟶𝐴 → ran 𝑓𝐴)
2927, 28sstrid 3205 . . . . . . . . . . . . . 14 (𝑓:ω⟶𝐴 → (𝑓𝑛) ⊆ 𝐴)
3026, 29syl 14 . . . . . . . . . . . . 13 (𝑓:ω–onto𝐴 → (𝑓𝑛) ⊆ 𝐴)
3130ad2antrr 488 . . . . . . . . . . . 12 (((𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → (𝑓𝑛) ⊆ 𝐴)
32313adantl1 1156 . . . . . . . . . . 11 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → (𝑓𝑛) ⊆ 𝐴)
33 simpl2 1004 . . . . . . . . . . . . 13 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → 𝑓:ω–onto𝐴)
34 equequ1 1736 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑎 → (𝑥 = 𝑦𝑎 = 𝑦))
3534dcbid 840 . . . . . . . . . . . . . . 15 (𝑥 = 𝑎 → (DECID 𝑥 = 𝑦DECID 𝑎 = 𝑦))
36 equequ2 1737 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑏 → (𝑎 = 𝑦𝑎 = 𝑏))
3736dcbid 840 . . . . . . . . . . . . . . 15 (𝑦 = 𝑏 → (DECID 𝑎 = 𝑦DECID 𝑎 = 𝑏))
3835, 37cbvral2v 2752 . . . . . . . . . . . . . 14 (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ↔ ∀𝑎𝐴𝑏𝐴 DECID 𝑎 = 𝑏)
39 ssralv 3258 . . . . . . . . . . . . . . . . 17 ((𝑓𝑛) ⊆ 𝐴 → (∀𝑏𝐴 DECID 𝑎 = 𝑏 → ∀𝑏 ∈ (𝑓𝑛)DECID 𝑎 = 𝑏))
4030, 39syl 14 . . . . . . . . . . . . . . . 16 (𝑓:ω–onto𝐴 → (∀𝑏𝐴 DECID 𝑎 = 𝑏 → ∀𝑏 ∈ (𝑓𝑛)DECID 𝑎 = 𝑏))
4140ralimdv 2575 . . . . . . . . . . . . . . 15 (𝑓:ω–onto𝐴 → (∀𝑎𝐴𝑏𝐴 DECID 𝑎 = 𝑏 → ∀𝑎𝐴𝑏 ∈ (𝑓𝑛)DECID 𝑎 = 𝑏))
42 ssralv 3258 . . . . . . . . . . . . . . 15 ((𝑓𝑛) ⊆ 𝐴 → (∀𝑎𝐴𝑏 ∈ (𝑓𝑛)DECID 𝑎 = 𝑏 → ∀𝑎 ∈ (𝑓𝑛)∀𝑏 ∈ (𝑓𝑛)DECID 𝑎 = 𝑏))
4330, 41, 42sylsyld 58 . . . . . . . . . . . . . 14 (𝑓:ω–onto𝐴 → (∀𝑎𝐴𝑏𝐴 DECID 𝑎 = 𝑏 → ∀𝑎 ∈ (𝑓𝑛)∀𝑏 ∈ (𝑓𝑛)DECID 𝑎 = 𝑏))
4438, 43biimtrid 152 . . . . . . . . . . . . 13 (𝑓:ω–onto𝐴 → (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 → ∀𝑎 ∈ (𝑓𝑛)∀𝑏 ∈ (𝑓𝑛)DECID 𝑎 = 𝑏))
4533, 19, 44sylc 62 . . . . . . . . . . . 12 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → ∀𝑎 ∈ (𝑓𝑛)∀𝑏 ∈ (𝑓𝑛)DECID 𝑎 = 𝑏)
46 simpr 110 . . . . . . . . . . . . . 14 (((𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → 𝑛 ∈ ω)
47 fofun 5506 . . . . . . . . . . . . . . . . 17 (𝑓:ω–onto𝐴 → Fun 𝑓)
4847ad2antrr 488 . . . . . . . . . . . . . . . 16 (((𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → Fun 𝑓)
49 ordom 4659 . . . . . . . . . . . . . . . . . . 19 Ord ω
50 ordtr 4429 . . . . . . . . . . . . . . . . . . 19 (Ord ω → Tr ω)
5149, 50ax-mp 5 . . . . . . . . . . . . . . . . . 18 Tr ω
52 trss 4155 . . . . . . . . . . . . . . . . . 18 (Tr ω → (𝑛 ∈ ω → 𝑛 ⊆ ω))
5351, 46, 52mpsyl 65 . . . . . . . . . . . . . . . . 17 (((𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → 𝑛 ⊆ ω)
5426fdmd 5438 . . . . . . . . . . . . . . . . . 18 (𝑓:ω–onto𝐴 → dom 𝑓 = ω)
5554ad2antrr 488 . . . . . . . . . . . . . . . . 17 (((𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → dom 𝑓 = ω)
5653, 55sseqtrrd 3233 . . . . . . . . . . . . . . . 16 (((𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → 𝑛 ⊆ dom 𝑓)
57 fores 5515 . . . . . . . . . . . . . . . 16 ((Fun 𝑓𝑛 ⊆ dom 𝑓) → (𝑓𝑛):𝑛onto→(𝑓𝑛))
5848, 56, 57syl2anc 411 . . . . . . . . . . . . . . 15 (((𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → (𝑓𝑛):𝑛onto→(𝑓𝑛))
59 vex 2776 . . . . . . . . . . . . . . . . 17 𝑓 ∈ V
6059resex 5005 . . . . . . . . . . . . . . . 16 (𝑓𝑛) ∈ V
61 foeq1 5501 . . . . . . . . . . . . . . . 16 (𝑔 = (𝑓𝑛) → (𝑔:𝑛onto→(𝑓𝑛) ↔ (𝑓𝑛):𝑛onto→(𝑓𝑛)))
6260, 61spcev 2869 . . . . . . . . . . . . . . 15 ((𝑓𝑛):𝑛onto→(𝑓𝑛) → ∃𝑔 𝑔:𝑛onto→(𝑓𝑛))
6358, 62syl 14 . . . . . . . . . . . . . 14 (((𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → ∃𝑔 𝑔:𝑛onto→(𝑓𝑛))
64 foeq2 5502 . . . . . . . . . . . . . . . 16 (𝑚 = 𝑛 → (𝑔:𝑚onto→(𝑓𝑛) ↔ 𝑔:𝑛onto→(𝑓𝑛)))
6564exbidv 1849 . . . . . . . . . . . . . . 15 (𝑚 = 𝑛 → (∃𝑔 𝑔:𝑚onto→(𝑓𝑛) ↔ ∃𝑔 𝑔:𝑛onto→(𝑓𝑛)))
6665rspcev 2878 . . . . . . . . . . . . . 14 ((𝑛 ∈ ω ∧ ∃𝑔 𝑔:𝑛onto→(𝑓𝑛)) → ∃𝑚 ∈ ω ∃𝑔 𝑔:𝑚onto→(𝑓𝑛))
6746, 63, 66syl2anc 411 . . . . . . . . . . . . 13 (((𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → ∃𝑚 ∈ ω ∃𝑔 𝑔:𝑚onto→(𝑓𝑛))
68673adantl1 1156 . . . . . . . . . . . 12 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → ∃𝑚 ∈ ω ∃𝑔 𝑔:𝑚onto→(𝑓𝑛))
69 fidcenum 7065 . . . . . . . . . . . 12 ((𝑓𝑛) ∈ Fin ↔ (∀𝑎 ∈ (𝑓𝑛)∀𝑏 ∈ (𝑓𝑛)DECID 𝑎 = 𝑏 ∧ ∃𝑚 ∈ ω ∃𝑔 𝑔:𝑚onto→(𝑓𝑛)))
7045, 68, 69sylanbrc 417 . . . . . . . . . . 11 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → (𝑓𝑛) ∈ Fin)
7124, 25, 32, 70inffinp1 12844 . . . . . . . . . 10 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → ∃𝑢𝐴 ¬ 𝑢 ∈ (𝑓𝑛))
72 simprl 529 . . . . . . . . . . . 12 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) ∧ (𝑢𝐴 ∧ ¬ 𝑢 ∈ (𝑓𝑛))) → 𝑢𝐴)
73 foelrn 5828 . . . . . . . . . . . 12 ((𝑓:ω–onto𝐴𝑢𝐴) → ∃𝑘 ∈ ω 𝑢 = (𝑓𝑘))
7433, 72, 73syl2an2r 595 . . . . . . . . . . 11 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) ∧ (𝑢𝐴 ∧ ¬ 𝑢 ∈ (𝑓𝑛))) → ∃𝑘 ∈ ω 𝑢 = (𝑓𝑘))
75 simpr 110 . . . . . . . . . . . . . 14 ((((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) ∧ (𝑢𝐴 ∧ ¬ 𝑢 ∈ (𝑓𝑛))) ∧ 𝑘 ∈ ω) ∧ 𝑢 = (𝑓𝑘)) → 𝑢 = (𝑓𝑘))
76 simprr 531 . . . . . . . . . . . . . . 15 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) ∧ (𝑢𝐴 ∧ ¬ 𝑢 ∈ (𝑓𝑛))) → ¬ 𝑢 ∈ (𝑓𝑛))
7776ad2antrr 488 . . . . . . . . . . . . . 14 ((((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) ∧ (𝑢𝐴 ∧ ¬ 𝑢 ∈ (𝑓𝑛))) ∧ 𝑘 ∈ ω) ∧ 𝑢 = (𝑓𝑘)) → ¬ 𝑢 ∈ (𝑓𝑛))
7875, 77eqneltrrd 2303 . . . . . . . . . . . . 13 ((((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) ∧ (𝑢𝐴 ∧ ¬ 𝑢 ∈ (𝑓𝑛))) ∧ 𝑘 ∈ ω) ∧ 𝑢 = (𝑓𝑘)) → ¬ (𝑓𝑘) ∈ (𝑓𝑛))
7978ex 115 . . . . . . . . . . . 12 (((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) ∧ (𝑢𝐴 ∧ ¬ 𝑢 ∈ (𝑓𝑛))) ∧ 𝑘 ∈ ω) → (𝑢 = (𝑓𝑘) → ¬ (𝑓𝑘) ∈ (𝑓𝑛)))
8079reximdva 2609 . . . . . . . . . . 11 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) ∧ (𝑢𝐴 ∧ ¬ 𝑢 ∈ (𝑓𝑛))) → (∃𝑘 ∈ ω 𝑢 = (𝑓𝑘) → ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛)))
8174, 80mpd 13 . . . . . . . . . 10 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) ∧ (𝑢𝐴 ∧ ¬ 𝑢 ∈ (𝑓𝑛))) → ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))
8271, 81rexlimddv 2629 . . . . . . . . 9 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))
8382ralrimiva 2580 . . . . . . . 8 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))
8418, 83jca 306 . . . . . . 7 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) → (𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛)))
85843com23 1212 . . . . . 6 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝑓:ω–onto𝐴) → (𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛)))
86853expia 1208 . . . . 5 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴) → (𝑓:ω–onto𝐴 → (𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))))
8786eximdv 1904 . . . 4 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴) → (∃𝑓 𝑓:ω–onto𝐴 → ∃𝑓(𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))))
8816, 17, 87sylc 62 . . 3 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓 𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) → ∃𝑓(𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛)))
8915, 88, 1sylanbrc 417 . 2 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓 𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) → 𝐴 ≈ ℕ)
9014, 89impbii 126 1 (𝐴 ≈ ℕ ↔ (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓 𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  DECID wdc 836  w3a 981   = wceq 1373  wex 1516  wcel 2177  wral 2485  wrex 2486  wss 3167   class class class wbr 4047  Tr wtr 4146  Ord word 4413  ωcom 4642  dom cdm 4679  ran crn 4680  cres 4681  cima 4682  Fun wfun 5270  wf 5272  ontowfo 5274  cfv 5276  cen 6832  cdom 6833  Fincfn 6834  cn 9043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-addass 8034  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-0id 8040  ax-rnegex 8041  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-ltadd 8048
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-frec 6484  df-1o 6509  df-er 6627  df-pm 6745  df-en 6835  df-dom 6836  df-fin 6837  df-dju 7147  df-inl 7156  df-inr 7157  df-case 7193  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-inn 9044  df-n0 9303  df-z 9380  df-uz 9656  df-fz 10138  df-seqfrec 10600
This theorem is referenced by:  qnnen  12846  unbendc  12869  nnnninfen  16032
  Copyright terms: Public domain W3C validator