ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctinf GIF version

Theorem ctinf 12587
Description: A set is countably infinite if and only if it has decidable equality, is countable, and is infinite. (Contributed by Jim Kingdon, 7-Aug-2023.)
Assertion
Ref Expression
ctinf (𝐴 ≈ ℕ ↔ (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓 𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴))
Distinct variable group:   𝐴,𝑓,𝑦,𝑥

Proof of Theorem ctinf
Dummy variables 𝑎 𝑏 𝑛 𝑘 𝑢 𝑔 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ctinfom 12585 . . . 4 (𝐴 ≈ ℕ ↔ (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))))
21simplbi 274 . . 3 (𝐴 ≈ ℕ → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
31simprbi 275 . . . 4 (𝐴 ≈ ℕ → ∃𝑓(𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛)))
4 simpl 109 . . . . . 6 ((𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛)) → 𝑓:ω–onto𝐴)
54a1i 9 . . . . 5 (𝐴 ≈ ℕ → ((𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛)) → 𝑓:ω–onto𝐴))
65eximdv 1891 . . . 4 (𝐴 ≈ ℕ → (∃𝑓(𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛)) → ∃𝑓 𝑓:ω–onto𝐴))
73, 6mpd 13 . . 3 (𝐴 ≈ ℕ → ∃𝑓 𝑓:ω–onto𝐴)
8 nnenom 10505 . . . . . 6 ℕ ≈ ω
9 entr 6838 . . . . . 6 ((𝐴 ≈ ℕ ∧ ℕ ≈ ω) → 𝐴 ≈ ω)
108, 9mpan2 425 . . . . 5 (𝐴 ≈ ℕ → 𝐴 ≈ ω)
1110ensymd 6837 . . . 4 (𝐴 ≈ ℕ → ω ≈ 𝐴)
12 endom 6817 . . . 4 (ω ≈ 𝐴 → ω ≼ 𝐴)
1311, 12syl 14 . . 3 (𝐴 ≈ ℕ → ω ≼ 𝐴)
142, 7, 133jca 1179 . 2 (𝐴 ≈ ℕ → (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓 𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴))
15 simp1 999 . . 3 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓 𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
16 3simpb 997 . . . 4 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓 𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) → (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴))
17 simp2 1000 . . . 4 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓 𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) → ∃𝑓 𝑓:ω–onto𝐴)
18 simp2 1000 . . . . . . . 8 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) → 𝑓:ω–onto𝐴)
19 simpl1 1002 . . . . . . . . . . . 12 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
20 equequ1 1723 . . . . . . . . . . . . . . 15 (𝑥 = 𝑢 → (𝑥 = 𝑦𝑢 = 𝑦))
2120dcbid 839 . . . . . . . . . . . . . 14 (𝑥 = 𝑢 → (DECID 𝑥 = 𝑦DECID 𝑢 = 𝑦))
2221ralbidv 2494 . . . . . . . . . . . . 13 (𝑥 = 𝑢 → (∀𝑦𝐴 DECID 𝑥 = 𝑦 ↔ ∀𝑦𝐴 DECID 𝑢 = 𝑦))
2322cbvralv 2726 . . . . . . . . . . . 12 (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ↔ ∀𝑢𝐴𝑦𝐴 DECID 𝑢 = 𝑦)
2419, 23sylib 122 . . . . . . . . . . 11 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → ∀𝑢𝐴𝑦𝐴 DECID 𝑢 = 𝑦)
25 simpl3 1004 . . . . . . . . . . 11 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → ω ≼ 𝐴)
26 fof 5476 . . . . . . . . . . . . . 14 (𝑓:ω–onto𝐴𝑓:ω⟶𝐴)
27 imassrn 5016 . . . . . . . . . . . . . . 15 (𝑓𝑛) ⊆ ran 𝑓
28 frn 5412 . . . . . . . . . . . . . . 15 (𝑓:ω⟶𝐴 → ran 𝑓𝐴)
2927, 28sstrid 3190 . . . . . . . . . . . . . 14 (𝑓:ω⟶𝐴 → (𝑓𝑛) ⊆ 𝐴)
3026, 29syl 14 . . . . . . . . . . . . 13 (𝑓:ω–onto𝐴 → (𝑓𝑛) ⊆ 𝐴)
3130ad2antrr 488 . . . . . . . . . . . 12 (((𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → (𝑓𝑛) ⊆ 𝐴)
32313adantl1 1155 . . . . . . . . . . 11 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → (𝑓𝑛) ⊆ 𝐴)
33 simpl2 1003 . . . . . . . . . . . . 13 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → 𝑓:ω–onto𝐴)
34 equequ1 1723 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑎 → (𝑥 = 𝑦𝑎 = 𝑦))
3534dcbid 839 . . . . . . . . . . . . . . 15 (𝑥 = 𝑎 → (DECID 𝑥 = 𝑦DECID 𝑎 = 𝑦))
36 equequ2 1724 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑏 → (𝑎 = 𝑦𝑎 = 𝑏))
3736dcbid 839 . . . . . . . . . . . . . . 15 (𝑦 = 𝑏 → (DECID 𝑎 = 𝑦DECID 𝑎 = 𝑏))
3835, 37cbvral2v 2739 . . . . . . . . . . . . . 14 (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ↔ ∀𝑎𝐴𝑏𝐴 DECID 𝑎 = 𝑏)
39 ssralv 3243 . . . . . . . . . . . . . . . . 17 ((𝑓𝑛) ⊆ 𝐴 → (∀𝑏𝐴 DECID 𝑎 = 𝑏 → ∀𝑏 ∈ (𝑓𝑛)DECID 𝑎 = 𝑏))
4030, 39syl 14 . . . . . . . . . . . . . . . 16 (𝑓:ω–onto𝐴 → (∀𝑏𝐴 DECID 𝑎 = 𝑏 → ∀𝑏 ∈ (𝑓𝑛)DECID 𝑎 = 𝑏))
4140ralimdv 2562 . . . . . . . . . . . . . . 15 (𝑓:ω–onto𝐴 → (∀𝑎𝐴𝑏𝐴 DECID 𝑎 = 𝑏 → ∀𝑎𝐴𝑏 ∈ (𝑓𝑛)DECID 𝑎 = 𝑏))
42 ssralv 3243 . . . . . . . . . . . . . . 15 ((𝑓𝑛) ⊆ 𝐴 → (∀𝑎𝐴𝑏 ∈ (𝑓𝑛)DECID 𝑎 = 𝑏 → ∀𝑎 ∈ (𝑓𝑛)∀𝑏 ∈ (𝑓𝑛)DECID 𝑎 = 𝑏))
4330, 41, 42sylsyld 58 . . . . . . . . . . . . . 14 (𝑓:ω–onto𝐴 → (∀𝑎𝐴𝑏𝐴 DECID 𝑎 = 𝑏 → ∀𝑎 ∈ (𝑓𝑛)∀𝑏 ∈ (𝑓𝑛)DECID 𝑎 = 𝑏))
4438, 43biimtrid 152 . . . . . . . . . . . . 13 (𝑓:ω–onto𝐴 → (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 → ∀𝑎 ∈ (𝑓𝑛)∀𝑏 ∈ (𝑓𝑛)DECID 𝑎 = 𝑏))
4533, 19, 44sylc 62 . . . . . . . . . . . 12 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → ∀𝑎 ∈ (𝑓𝑛)∀𝑏 ∈ (𝑓𝑛)DECID 𝑎 = 𝑏)
46 simpr 110 . . . . . . . . . . . . . 14 (((𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → 𝑛 ∈ ω)
47 fofun 5477 . . . . . . . . . . . . . . . . 17 (𝑓:ω–onto𝐴 → Fun 𝑓)
4847ad2antrr 488 . . . . . . . . . . . . . . . 16 (((𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → Fun 𝑓)
49 ordom 4639 . . . . . . . . . . . . . . . . . . 19 Ord ω
50 ordtr 4409 . . . . . . . . . . . . . . . . . . 19 (Ord ω → Tr ω)
5149, 50ax-mp 5 . . . . . . . . . . . . . . . . . 18 Tr ω
52 trss 4136 . . . . . . . . . . . . . . . . . 18 (Tr ω → (𝑛 ∈ ω → 𝑛 ⊆ ω))
5351, 46, 52mpsyl 65 . . . . . . . . . . . . . . . . 17 (((𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → 𝑛 ⊆ ω)
5426fdmd 5410 . . . . . . . . . . . . . . . . . 18 (𝑓:ω–onto𝐴 → dom 𝑓 = ω)
5554ad2antrr 488 . . . . . . . . . . . . . . . . 17 (((𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → dom 𝑓 = ω)
5653, 55sseqtrrd 3218 . . . . . . . . . . . . . . . 16 (((𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → 𝑛 ⊆ dom 𝑓)
57 fores 5486 . . . . . . . . . . . . . . . 16 ((Fun 𝑓𝑛 ⊆ dom 𝑓) → (𝑓𝑛):𝑛onto→(𝑓𝑛))
5848, 56, 57syl2anc 411 . . . . . . . . . . . . . . 15 (((𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → (𝑓𝑛):𝑛onto→(𝑓𝑛))
59 vex 2763 . . . . . . . . . . . . . . . . 17 𝑓 ∈ V
6059resex 4983 . . . . . . . . . . . . . . . 16 (𝑓𝑛) ∈ V
61 foeq1 5472 . . . . . . . . . . . . . . . 16 (𝑔 = (𝑓𝑛) → (𝑔:𝑛onto→(𝑓𝑛) ↔ (𝑓𝑛):𝑛onto→(𝑓𝑛)))
6260, 61spcev 2855 . . . . . . . . . . . . . . 15 ((𝑓𝑛):𝑛onto→(𝑓𝑛) → ∃𝑔 𝑔:𝑛onto→(𝑓𝑛))
6358, 62syl 14 . . . . . . . . . . . . . 14 (((𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → ∃𝑔 𝑔:𝑛onto→(𝑓𝑛))
64 foeq2 5473 . . . . . . . . . . . . . . . 16 (𝑚 = 𝑛 → (𝑔:𝑚onto→(𝑓𝑛) ↔ 𝑔:𝑛onto→(𝑓𝑛)))
6564exbidv 1836 . . . . . . . . . . . . . . 15 (𝑚 = 𝑛 → (∃𝑔 𝑔:𝑚onto→(𝑓𝑛) ↔ ∃𝑔 𝑔:𝑛onto→(𝑓𝑛)))
6665rspcev 2864 . . . . . . . . . . . . . 14 ((𝑛 ∈ ω ∧ ∃𝑔 𝑔:𝑛onto→(𝑓𝑛)) → ∃𝑚 ∈ ω ∃𝑔 𝑔:𝑚onto→(𝑓𝑛))
6746, 63, 66syl2anc 411 . . . . . . . . . . . . 13 (((𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → ∃𝑚 ∈ ω ∃𝑔 𝑔:𝑚onto→(𝑓𝑛))
68673adantl1 1155 . . . . . . . . . . . 12 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → ∃𝑚 ∈ ω ∃𝑔 𝑔:𝑚onto→(𝑓𝑛))
69 fidcenum 7015 . . . . . . . . . . . 12 ((𝑓𝑛) ∈ Fin ↔ (∀𝑎 ∈ (𝑓𝑛)∀𝑏 ∈ (𝑓𝑛)DECID 𝑎 = 𝑏 ∧ ∃𝑚 ∈ ω ∃𝑔 𝑔:𝑚onto→(𝑓𝑛)))
7045, 68, 69sylanbrc 417 . . . . . . . . . . 11 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → (𝑓𝑛) ∈ Fin)
7124, 25, 32, 70inffinp1 12586 . . . . . . . . . 10 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → ∃𝑢𝐴 ¬ 𝑢 ∈ (𝑓𝑛))
72 simprl 529 . . . . . . . . . . . 12 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) ∧ (𝑢𝐴 ∧ ¬ 𝑢 ∈ (𝑓𝑛))) → 𝑢𝐴)
73 foelrn 5795 . . . . . . . . . . . 12 ((𝑓:ω–onto𝐴𝑢𝐴) → ∃𝑘 ∈ ω 𝑢 = (𝑓𝑘))
7433, 72, 73syl2an2r 595 . . . . . . . . . . 11 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) ∧ (𝑢𝐴 ∧ ¬ 𝑢 ∈ (𝑓𝑛))) → ∃𝑘 ∈ ω 𝑢 = (𝑓𝑘))
75 simpr 110 . . . . . . . . . . . . . 14 ((((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) ∧ (𝑢𝐴 ∧ ¬ 𝑢 ∈ (𝑓𝑛))) ∧ 𝑘 ∈ ω) ∧ 𝑢 = (𝑓𝑘)) → 𝑢 = (𝑓𝑘))
76 simprr 531 . . . . . . . . . . . . . . 15 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) ∧ (𝑢𝐴 ∧ ¬ 𝑢 ∈ (𝑓𝑛))) → ¬ 𝑢 ∈ (𝑓𝑛))
7776ad2antrr 488 . . . . . . . . . . . . . 14 ((((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) ∧ (𝑢𝐴 ∧ ¬ 𝑢 ∈ (𝑓𝑛))) ∧ 𝑘 ∈ ω) ∧ 𝑢 = (𝑓𝑘)) → ¬ 𝑢 ∈ (𝑓𝑛))
7875, 77eqneltrrd 2290 . . . . . . . . . . . . 13 ((((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) ∧ (𝑢𝐴 ∧ ¬ 𝑢 ∈ (𝑓𝑛))) ∧ 𝑘 ∈ ω) ∧ 𝑢 = (𝑓𝑘)) → ¬ (𝑓𝑘) ∈ (𝑓𝑛))
7978ex 115 . . . . . . . . . . . 12 (((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) ∧ (𝑢𝐴 ∧ ¬ 𝑢 ∈ (𝑓𝑛))) ∧ 𝑘 ∈ ω) → (𝑢 = (𝑓𝑘) → ¬ (𝑓𝑘) ∈ (𝑓𝑛)))
8079reximdva 2596 . . . . . . . . . . 11 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) ∧ (𝑢𝐴 ∧ ¬ 𝑢 ∈ (𝑓𝑛))) → (∃𝑘 ∈ ω 𝑢 = (𝑓𝑘) → ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛)))
8174, 80mpd 13 . . . . . . . . . 10 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) ∧ (𝑢𝐴 ∧ ¬ 𝑢 ∈ (𝑓𝑛))) → ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))
8271, 81rexlimddv 2616 . . . . . . . . 9 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))
8382ralrimiva 2567 . . . . . . . 8 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))
8418, 83jca 306 . . . . . . 7 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) → (𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛)))
85843com23 1211 . . . . . 6 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝑓:ω–onto𝐴) → (𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛)))
86853expia 1207 . . . . 5 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴) → (𝑓:ω–onto𝐴 → (𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))))
8786eximdv 1891 . . . 4 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴) → (∃𝑓 𝑓:ω–onto𝐴 → ∃𝑓(𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))))
8816, 17, 87sylc 62 . . 3 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓 𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) → ∃𝑓(𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛)))
8915, 88, 1sylanbrc 417 . 2 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓 𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) → 𝐴 ≈ ℕ)
9014, 89impbii 126 1 (𝐴 ≈ ℕ ↔ (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓 𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  DECID wdc 835  w3a 980   = wceq 1364  wex 1503  wcel 2164  wral 2472  wrex 2473  wss 3153   class class class wbr 4029  Tr wtr 4127  Ord word 4393  ωcom 4622  dom cdm 4659  ran crn 4660  cres 4661  cima 4662  Fun wfun 5248  wf 5250  ontowfo 5252  cfv 5254  cen 6792  cdom 6793  Fincfn 6794  cn 8982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-1o 6469  df-er 6587  df-pm 6705  df-en 6795  df-dom 6796  df-fin 6797  df-dju 7097  df-inl 7106  df-inr 7107  df-case 7143  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593  df-fz 10075  df-seqfrec 10519
This theorem is referenced by:  qnnen  12588  unbendc  12611  nnnninfen  15511
  Copyright terms: Public domain W3C validator