ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctinf GIF version

Theorem ctinf 12385
Description: A set is countably infinite if and only if it has decidable equality, is countable, and is infinite. (Contributed by Jim Kingdon, 7-Aug-2023.)
Assertion
Ref Expression
ctinf (𝐴 ≈ ℕ ↔ (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓 𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴))
Distinct variable group:   𝐴,𝑓,𝑦,𝑥

Proof of Theorem ctinf
Dummy variables 𝑎 𝑏 𝑛 𝑘 𝑢 𝑔 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ctinfom 12383 . . . 4 (𝐴 ≈ ℕ ↔ (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))))
21simplbi 272 . . 3 (𝐴 ≈ ℕ → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
31simprbi 273 . . . 4 (𝐴 ≈ ℕ → ∃𝑓(𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛)))
4 simpl 108 . . . . . 6 ((𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛)) → 𝑓:ω–onto𝐴)
54a1i 9 . . . . 5 (𝐴 ≈ ℕ → ((𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛)) → 𝑓:ω–onto𝐴))
65eximdv 1873 . . . 4 (𝐴 ≈ ℕ → (∃𝑓(𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛)) → ∃𝑓 𝑓:ω–onto𝐴))
73, 6mpd 13 . . 3 (𝐴 ≈ ℕ → ∃𝑓 𝑓:ω–onto𝐴)
8 nnenom 10390 . . . . . 6 ℕ ≈ ω
9 entr 6762 . . . . . 6 ((𝐴 ≈ ℕ ∧ ℕ ≈ ω) → 𝐴 ≈ ω)
108, 9mpan2 423 . . . . 5 (𝐴 ≈ ℕ → 𝐴 ≈ ω)
1110ensymd 6761 . . . 4 (𝐴 ≈ ℕ → ω ≈ 𝐴)
12 endom 6741 . . . 4 (ω ≈ 𝐴 → ω ≼ 𝐴)
1311, 12syl 14 . . 3 (𝐴 ≈ ℕ → ω ≼ 𝐴)
142, 7, 133jca 1172 . 2 (𝐴 ≈ ℕ → (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓 𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴))
15 simp1 992 . . 3 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓 𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
16 3simpb 990 . . . 4 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓 𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) → (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴))
17 simp2 993 . . . 4 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓 𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) → ∃𝑓 𝑓:ω–onto𝐴)
18 simp2 993 . . . . . . . 8 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) → 𝑓:ω–onto𝐴)
19 simpl1 995 . . . . . . . . . . . 12 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
20 equequ1 1705 . . . . . . . . . . . . . . 15 (𝑥 = 𝑢 → (𝑥 = 𝑦𝑢 = 𝑦))
2120dcbid 833 . . . . . . . . . . . . . 14 (𝑥 = 𝑢 → (DECID 𝑥 = 𝑦DECID 𝑢 = 𝑦))
2221ralbidv 2470 . . . . . . . . . . . . 13 (𝑥 = 𝑢 → (∀𝑦𝐴 DECID 𝑥 = 𝑦 ↔ ∀𝑦𝐴 DECID 𝑢 = 𝑦))
2322cbvralv 2696 . . . . . . . . . . . 12 (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ↔ ∀𝑢𝐴𝑦𝐴 DECID 𝑢 = 𝑦)
2419, 23sylib 121 . . . . . . . . . . 11 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → ∀𝑢𝐴𝑦𝐴 DECID 𝑢 = 𝑦)
25 simpl3 997 . . . . . . . . . . 11 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → ω ≼ 𝐴)
26 fof 5420 . . . . . . . . . . . . . 14 (𝑓:ω–onto𝐴𝑓:ω⟶𝐴)
27 imassrn 4964 . . . . . . . . . . . . . . 15 (𝑓𝑛) ⊆ ran 𝑓
28 frn 5356 . . . . . . . . . . . . . . 15 (𝑓:ω⟶𝐴 → ran 𝑓𝐴)
2927, 28sstrid 3158 . . . . . . . . . . . . . 14 (𝑓:ω⟶𝐴 → (𝑓𝑛) ⊆ 𝐴)
3026, 29syl 14 . . . . . . . . . . . . 13 (𝑓:ω–onto𝐴 → (𝑓𝑛) ⊆ 𝐴)
3130ad2antrr 485 . . . . . . . . . . . 12 (((𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → (𝑓𝑛) ⊆ 𝐴)
32313adantl1 1148 . . . . . . . . . . 11 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → (𝑓𝑛) ⊆ 𝐴)
33 simpl2 996 . . . . . . . . . . . . 13 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → 𝑓:ω–onto𝐴)
34 equequ1 1705 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑎 → (𝑥 = 𝑦𝑎 = 𝑦))
3534dcbid 833 . . . . . . . . . . . . . . 15 (𝑥 = 𝑎 → (DECID 𝑥 = 𝑦DECID 𝑎 = 𝑦))
36 equequ2 1706 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑏 → (𝑎 = 𝑦𝑎 = 𝑏))
3736dcbid 833 . . . . . . . . . . . . . . 15 (𝑦 = 𝑏 → (DECID 𝑎 = 𝑦DECID 𝑎 = 𝑏))
3835, 37cbvral2v 2709 . . . . . . . . . . . . . 14 (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ↔ ∀𝑎𝐴𝑏𝐴 DECID 𝑎 = 𝑏)
39 ssralv 3211 . . . . . . . . . . . . . . . . 17 ((𝑓𝑛) ⊆ 𝐴 → (∀𝑏𝐴 DECID 𝑎 = 𝑏 → ∀𝑏 ∈ (𝑓𝑛)DECID 𝑎 = 𝑏))
4030, 39syl 14 . . . . . . . . . . . . . . . 16 (𝑓:ω–onto𝐴 → (∀𝑏𝐴 DECID 𝑎 = 𝑏 → ∀𝑏 ∈ (𝑓𝑛)DECID 𝑎 = 𝑏))
4140ralimdv 2538 . . . . . . . . . . . . . . 15 (𝑓:ω–onto𝐴 → (∀𝑎𝐴𝑏𝐴 DECID 𝑎 = 𝑏 → ∀𝑎𝐴𝑏 ∈ (𝑓𝑛)DECID 𝑎 = 𝑏))
42 ssralv 3211 . . . . . . . . . . . . . . 15 ((𝑓𝑛) ⊆ 𝐴 → (∀𝑎𝐴𝑏 ∈ (𝑓𝑛)DECID 𝑎 = 𝑏 → ∀𝑎 ∈ (𝑓𝑛)∀𝑏 ∈ (𝑓𝑛)DECID 𝑎 = 𝑏))
4330, 41, 42sylsyld 58 . . . . . . . . . . . . . 14 (𝑓:ω–onto𝐴 → (∀𝑎𝐴𝑏𝐴 DECID 𝑎 = 𝑏 → ∀𝑎 ∈ (𝑓𝑛)∀𝑏 ∈ (𝑓𝑛)DECID 𝑎 = 𝑏))
4438, 43syl5bi 151 . . . . . . . . . . . . 13 (𝑓:ω–onto𝐴 → (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 → ∀𝑎 ∈ (𝑓𝑛)∀𝑏 ∈ (𝑓𝑛)DECID 𝑎 = 𝑏))
4533, 19, 44sylc 62 . . . . . . . . . . . 12 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → ∀𝑎 ∈ (𝑓𝑛)∀𝑏 ∈ (𝑓𝑛)DECID 𝑎 = 𝑏)
46 simpr 109 . . . . . . . . . . . . . 14 (((𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → 𝑛 ∈ ω)
47 fofun 5421 . . . . . . . . . . . . . . . . 17 (𝑓:ω–onto𝐴 → Fun 𝑓)
4847ad2antrr 485 . . . . . . . . . . . . . . . 16 (((𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → Fun 𝑓)
49 ordom 4591 . . . . . . . . . . . . . . . . . . 19 Ord ω
50 ordtr 4363 . . . . . . . . . . . . . . . . . . 19 (Ord ω → Tr ω)
5149, 50ax-mp 5 . . . . . . . . . . . . . . . . . 18 Tr ω
52 trss 4096 . . . . . . . . . . . . . . . . . 18 (Tr ω → (𝑛 ∈ ω → 𝑛 ⊆ ω))
5351, 46, 52mpsyl 65 . . . . . . . . . . . . . . . . 17 (((𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → 𝑛 ⊆ ω)
5426fdmd 5354 . . . . . . . . . . . . . . . . . 18 (𝑓:ω–onto𝐴 → dom 𝑓 = ω)
5554ad2antrr 485 . . . . . . . . . . . . . . . . 17 (((𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → dom 𝑓 = ω)
5653, 55sseqtrrd 3186 . . . . . . . . . . . . . . . 16 (((𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → 𝑛 ⊆ dom 𝑓)
57 fores 5429 . . . . . . . . . . . . . . . 16 ((Fun 𝑓𝑛 ⊆ dom 𝑓) → (𝑓𝑛):𝑛onto→(𝑓𝑛))
5848, 56, 57syl2anc 409 . . . . . . . . . . . . . . 15 (((𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → (𝑓𝑛):𝑛onto→(𝑓𝑛))
59 vex 2733 . . . . . . . . . . . . . . . . 17 𝑓 ∈ V
6059resex 4932 . . . . . . . . . . . . . . . 16 (𝑓𝑛) ∈ V
61 foeq1 5416 . . . . . . . . . . . . . . . 16 (𝑔 = (𝑓𝑛) → (𝑔:𝑛onto→(𝑓𝑛) ↔ (𝑓𝑛):𝑛onto→(𝑓𝑛)))
6260, 61spcev 2825 . . . . . . . . . . . . . . 15 ((𝑓𝑛):𝑛onto→(𝑓𝑛) → ∃𝑔 𝑔:𝑛onto→(𝑓𝑛))
6358, 62syl 14 . . . . . . . . . . . . . 14 (((𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → ∃𝑔 𝑔:𝑛onto→(𝑓𝑛))
64 foeq2 5417 . . . . . . . . . . . . . . . 16 (𝑚 = 𝑛 → (𝑔:𝑚onto→(𝑓𝑛) ↔ 𝑔:𝑛onto→(𝑓𝑛)))
6564exbidv 1818 . . . . . . . . . . . . . . 15 (𝑚 = 𝑛 → (∃𝑔 𝑔:𝑚onto→(𝑓𝑛) ↔ ∃𝑔 𝑔:𝑛onto→(𝑓𝑛)))
6665rspcev 2834 . . . . . . . . . . . . . 14 ((𝑛 ∈ ω ∧ ∃𝑔 𝑔:𝑛onto→(𝑓𝑛)) → ∃𝑚 ∈ ω ∃𝑔 𝑔:𝑚onto→(𝑓𝑛))
6746, 63, 66syl2anc 409 . . . . . . . . . . . . 13 (((𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → ∃𝑚 ∈ ω ∃𝑔 𝑔:𝑚onto→(𝑓𝑛))
68673adantl1 1148 . . . . . . . . . . . 12 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → ∃𝑚 ∈ ω ∃𝑔 𝑔:𝑚onto→(𝑓𝑛))
69 fidcenum 6933 . . . . . . . . . . . 12 ((𝑓𝑛) ∈ Fin ↔ (∀𝑎 ∈ (𝑓𝑛)∀𝑏 ∈ (𝑓𝑛)DECID 𝑎 = 𝑏 ∧ ∃𝑚 ∈ ω ∃𝑔 𝑔:𝑚onto→(𝑓𝑛)))
7045, 68, 69sylanbrc 415 . . . . . . . . . . 11 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → (𝑓𝑛) ∈ Fin)
7124, 25, 32, 70inffinp1 12384 . . . . . . . . . 10 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → ∃𝑢𝐴 ¬ 𝑢 ∈ (𝑓𝑛))
72 simprl 526 . . . . . . . . . . . 12 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) ∧ (𝑢𝐴 ∧ ¬ 𝑢 ∈ (𝑓𝑛))) → 𝑢𝐴)
73 foelrn 5732 . . . . . . . . . . . 12 ((𝑓:ω–onto𝐴𝑢𝐴) → ∃𝑘 ∈ ω 𝑢 = (𝑓𝑘))
7433, 72, 73syl2an2r 590 . . . . . . . . . . 11 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) ∧ (𝑢𝐴 ∧ ¬ 𝑢 ∈ (𝑓𝑛))) → ∃𝑘 ∈ ω 𝑢 = (𝑓𝑘))
75 simpr 109 . . . . . . . . . . . . . 14 ((((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) ∧ (𝑢𝐴 ∧ ¬ 𝑢 ∈ (𝑓𝑛))) ∧ 𝑘 ∈ ω) ∧ 𝑢 = (𝑓𝑘)) → 𝑢 = (𝑓𝑘))
76 simprr 527 . . . . . . . . . . . . . . 15 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) ∧ (𝑢𝐴 ∧ ¬ 𝑢 ∈ (𝑓𝑛))) → ¬ 𝑢 ∈ (𝑓𝑛))
7776ad2antrr 485 . . . . . . . . . . . . . 14 ((((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) ∧ (𝑢𝐴 ∧ ¬ 𝑢 ∈ (𝑓𝑛))) ∧ 𝑘 ∈ ω) ∧ 𝑢 = (𝑓𝑘)) → ¬ 𝑢 ∈ (𝑓𝑛))
7875, 77eqneltrrd 2267 . . . . . . . . . . . . 13 ((((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) ∧ (𝑢𝐴 ∧ ¬ 𝑢 ∈ (𝑓𝑛))) ∧ 𝑘 ∈ ω) ∧ 𝑢 = (𝑓𝑘)) → ¬ (𝑓𝑘) ∈ (𝑓𝑛))
7978ex 114 . . . . . . . . . . . 12 (((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) ∧ (𝑢𝐴 ∧ ¬ 𝑢 ∈ (𝑓𝑛))) ∧ 𝑘 ∈ ω) → (𝑢 = (𝑓𝑘) → ¬ (𝑓𝑘) ∈ (𝑓𝑛)))
8079reximdva 2572 . . . . . . . . . . 11 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) ∧ (𝑢𝐴 ∧ ¬ 𝑢 ∈ (𝑓𝑛))) → (∃𝑘 ∈ ω 𝑢 = (𝑓𝑘) → ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛)))
8174, 80mpd 13 . . . . . . . . . 10 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) ∧ (𝑢𝐴 ∧ ¬ 𝑢 ∈ (𝑓𝑛))) → ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))
8271, 81rexlimddv 2592 . . . . . . . . 9 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))
8382ralrimiva 2543 . . . . . . . 8 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))
8418, 83jca 304 . . . . . . 7 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) → (𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛)))
85843com23 1204 . . . . . 6 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝑓:ω–onto𝐴) → (𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛)))
86853expia 1200 . . . . 5 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴) → (𝑓:ω–onto𝐴 → (𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))))
8786eximdv 1873 . . . 4 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴) → (∃𝑓 𝑓:ω–onto𝐴 → ∃𝑓(𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))))
8816, 17, 87sylc 62 . . 3 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓 𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) → ∃𝑓(𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛)))
8915, 88, 1sylanbrc 415 . 2 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓 𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴) → 𝐴 ≈ ℕ)
9014, 89impbii 125 1 (𝐴 ≈ ℕ ↔ (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓 𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  DECID wdc 829  w3a 973   = wceq 1348  wex 1485  wcel 2141  wral 2448  wrex 2449  wss 3121   class class class wbr 3989  Tr wtr 4087  Ord word 4347  ωcom 4574  dom cdm 4611  ran crn 4612  cres 4613  cima 4614  Fun wfun 5192  wf 5194  ontowfo 5196  cfv 5198  cen 6716  cdom 6717  Fincfn 6718  cn 8878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-1o 6395  df-er 6513  df-pm 6629  df-en 6719  df-dom 6720  df-fin 6721  df-dju 7015  df-inl 7024  df-inr 7025  df-case 7061  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-fz 9966  df-seqfrec 10402
This theorem is referenced by:  qnnen  12386  unbendc  12409
  Copyright terms: Public domain W3C validator