| Step | Hyp | Ref
| Expression |
| 1 | | ctinfom 12645 |
. . . 4
⊢ (𝐴 ≈ ℕ ↔
(∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ω–onto→𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓‘𝑘) ∈ (𝑓 “ 𝑛)))) |
| 2 | 1 | simplbi 274 |
. . 3
⊢ (𝐴 ≈ ℕ →
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
| 3 | 1 | simprbi 275 |
. . . 4
⊢ (𝐴 ≈ ℕ →
∃𝑓(𝑓:ω–onto→𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓‘𝑘) ∈ (𝑓 “ 𝑛))) |
| 4 | | simpl 109 |
. . . . . 6
⊢ ((𝑓:ω–onto→𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓‘𝑘) ∈ (𝑓 “ 𝑛)) → 𝑓:ω–onto→𝐴) |
| 5 | 4 | a1i 9 |
. . . . 5
⊢ (𝐴 ≈ ℕ → ((𝑓:ω–onto→𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓‘𝑘) ∈ (𝑓 “ 𝑛)) → 𝑓:ω–onto→𝐴)) |
| 6 | 5 | eximdv 1894 |
. . . 4
⊢ (𝐴 ≈ ℕ →
(∃𝑓(𝑓:ω–onto→𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓‘𝑘) ∈ (𝑓 “ 𝑛)) → ∃𝑓 𝑓:ω–onto→𝐴)) |
| 7 | 3, 6 | mpd 13 |
. . 3
⊢ (𝐴 ≈ ℕ →
∃𝑓 𝑓:ω–onto→𝐴) |
| 8 | | nnenom 10526 |
. . . . . 6
⊢ ℕ
≈ ω |
| 9 | | entr 6843 |
. . . . . 6
⊢ ((𝐴 ≈ ℕ ∧ ℕ
≈ ω) → 𝐴
≈ ω) |
| 10 | 8, 9 | mpan2 425 |
. . . . 5
⊢ (𝐴 ≈ ℕ → 𝐴 ≈
ω) |
| 11 | 10 | ensymd 6842 |
. . . 4
⊢ (𝐴 ≈ ℕ → ω
≈ 𝐴) |
| 12 | | endom 6822 |
. . . 4
⊢ (ω
≈ 𝐴 → ω
≼ 𝐴) |
| 13 | 11, 12 | syl 14 |
. . 3
⊢ (𝐴 ≈ ℕ → ω
≼ 𝐴) |
| 14 | 2, 7, 13 | 3jca 1179 |
. 2
⊢ (𝐴 ≈ ℕ →
(∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓 𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴)) |
| 15 | | simp1 999 |
. . 3
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓 𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
| 16 | | 3simpb 997 |
. . . 4
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓 𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴)) |
| 17 | | simp2 1000 |
. . . 4
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓 𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) → ∃𝑓 𝑓:ω–onto→𝐴) |
| 18 | | simp2 1000 |
. . . . . . . 8
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) → 𝑓:ω–onto→𝐴) |
| 19 | | simpl1 1002 |
. . . . . . . . . . . 12
⊢
(((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
| 20 | | equequ1 1726 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑢 → (𝑥 = 𝑦 ↔ 𝑢 = 𝑦)) |
| 21 | 20 | dcbid 839 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑢 → (DECID 𝑥 = 𝑦 ↔ DECID 𝑢 = 𝑦)) |
| 22 | 21 | ralbidv 2497 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑢 → (∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ↔ ∀𝑦 ∈ 𝐴 DECID 𝑢 = 𝑦)) |
| 23 | 22 | cbvralv 2729 |
. . . . . . . . . . . 12
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ↔ ∀𝑢 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑢 = 𝑦) |
| 24 | 19, 23 | sylib 122 |
. . . . . . . . . . 11
⊢
(((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → ∀𝑢 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑢 = 𝑦) |
| 25 | | simpl3 1004 |
. . . . . . . . . . 11
⊢
(((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → ω ≼ 𝐴) |
| 26 | | fof 5480 |
. . . . . . . . . . . . . 14
⊢ (𝑓:ω–onto→𝐴 → 𝑓:ω⟶𝐴) |
| 27 | | imassrn 5020 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 “ 𝑛) ⊆ ran 𝑓 |
| 28 | | frn 5416 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:ω⟶𝐴 → ran 𝑓 ⊆ 𝐴) |
| 29 | 27, 28 | sstrid 3194 |
. . . . . . . . . . . . . 14
⊢ (𝑓:ω⟶𝐴 → (𝑓 “ 𝑛) ⊆ 𝐴) |
| 30 | 26, 29 | syl 14 |
. . . . . . . . . . . . 13
⊢ (𝑓:ω–onto→𝐴 → (𝑓 “ 𝑛) ⊆ 𝐴) |
| 31 | 30 | ad2antrr 488 |
. . . . . . . . . . . 12
⊢ (((𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → (𝑓 “ 𝑛) ⊆ 𝐴) |
| 32 | 31 | 3adantl1 1155 |
. . . . . . . . . . 11
⊢
(((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → (𝑓 “ 𝑛) ⊆ 𝐴) |
| 33 | | simpl2 1003 |
. . . . . . . . . . . . 13
⊢
(((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → 𝑓:ω–onto→𝐴) |
| 34 | | equequ1 1726 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑎 → (𝑥 = 𝑦 ↔ 𝑎 = 𝑦)) |
| 35 | 34 | dcbid 839 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑎 → (DECID 𝑥 = 𝑦 ↔ DECID 𝑎 = 𝑦)) |
| 36 | | equequ2 1727 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑏 → (𝑎 = 𝑦 ↔ 𝑎 = 𝑏)) |
| 37 | 36 | dcbid 839 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑏 → (DECID 𝑎 = 𝑦 ↔ DECID 𝑎 = 𝑏)) |
| 38 | 35, 37 | cbvral2v 2742 |
. . . . . . . . . . . . . 14
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ↔ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 DECID 𝑎 = 𝑏) |
| 39 | | ssralv 3247 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓 “ 𝑛) ⊆ 𝐴 → (∀𝑏 ∈ 𝐴 DECID 𝑎 = 𝑏 → ∀𝑏 ∈ (𝑓 “ 𝑛)DECID 𝑎 = 𝑏)) |
| 40 | 30, 39 | syl 14 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓:ω–onto→𝐴 → (∀𝑏 ∈ 𝐴 DECID 𝑎 = 𝑏 → ∀𝑏 ∈ (𝑓 “ 𝑛)DECID 𝑎 = 𝑏)) |
| 41 | 40 | ralimdv 2565 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:ω–onto→𝐴 → (∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 DECID 𝑎 = 𝑏 → ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ (𝑓 “ 𝑛)DECID 𝑎 = 𝑏)) |
| 42 | | ssralv 3247 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 “ 𝑛) ⊆ 𝐴 → (∀𝑎 ∈ 𝐴 ∀𝑏 ∈ (𝑓 “ 𝑛)DECID 𝑎 = 𝑏 → ∀𝑎 ∈ (𝑓 “ 𝑛)∀𝑏 ∈ (𝑓 “ 𝑛)DECID 𝑎 = 𝑏)) |
| 43 | 30, 41, 42 | sylsyld 58 |
. . . . . . . . . . . . . 14
⊢ (𝑓:ω–onto→𝐴 → (∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 DECID 𝑎 = 𝑏 → ∀𝑎 ∈ (𝑓 “ 𝑛)∀𝑏 ∈ (𝑓 “ 𝑛)DECID 𝑎 = 𝑏)) |
| 44 | 38, 43 | biimtrid 152 |
. . . . . . . . . . . . 13
⊢ (𝑓:ω–onto→𝐴 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 → ∀𝑎 ∈ (𝑓 “ 𝑛)∀𝑏 ∈ (𝑓 “ 𝑛)DECID 𝑎 = 𝑏)) |
| 45 | 33, 19, 44 | sylc 62 |
. . . . . . . . . . . 12
⊢
(((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → ∀𝑎 ∈ (𝑓 “ 𝑛)∀𝑏 ∈ (𝑓 “ 𝑛)DECID 𝑎 = 𝑏) |
| 46 | | simpr 110 |
. . . . . . . . . . . . . 14
⊢ (((𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → 𝑛 ∈ ω) |
| 47 | | fofun 5481 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓:ω–onto→𝐴 → Fun 𝑓) |
| 48 | 47 | ad2antrr 488 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → Fun 𝑓) |
| 49 | | ordom 4643 |
. . . . . . . . . . . . . . . . . . 19
⊢ Ord
ω |
| 50 | | ordtr 4413 |
. . . . . . . . . . . . . . . . . . 19
⊢ (Ord
ω → Tr ω) |
| 51 | 49, 50 | ax-mp 5 |
. . . . . . . . . . . . . . . . . 18
⊢ Tr
ω |
| 52 | | trss 4140 |
. . . . . . . . . . . . . . . . . 18
⊢ (Tr
ω → (𝑛 ∈
ω → 𝑛 ⊆
ω)) |
| 53 | 51, 46, 52 | mpsyl 65 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → 𝑛 ⊆ ω) |
| 54 | 26 | fdmd 5414 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓:ω–onto→𝐴 → dom 𝑓 = ω) |
| 55 | 54 | ad2antrr 488 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → dom 𝑓 = ω) |
| 56 | 53, 55 | sseqtrrd 3222 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → 𝑛 ⊆ dom 𝑓) |
| 57 | | fores 5490 |
. . . . . . . . . . . . . . . 16
⊢ ((Fun
𝑓 ∧ 𝑛 ⊆ dom 𝑓) → (𝑓 ↾ 𝑛):𝑛–onto→(𝑓 “ 𝑛)) |
| 58 | 48, 56, 57 | syl2anc 411 |
. . . . . . . . . . . . . . 15
⊢ (((𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → (𝑓 ↾ 𝑛):𝑛–onto→(𝑓 “ 𝑛)) |
| 59 | | vex 2766 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑓 ∈ V |
| 60 | 59 | resex 4987 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 ↾ 𝑛) ∈ V |
| 61 | | foeq1 5476 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔 = (𝑓 ↾ 𝑛) → (𝑔:𝑛–onto→(𝑓 “ 𝑛) ↔ (𝑓 ↾ 𝑛):𝑛–onto→(𝑓 “ 𝑛))) |
| 62 | 60, 61 | spcev 2859 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 ↾ 𝑛):𝑛–onto→(𝑓 “ 𝑛) → ∃𝑔 𝑔:𝑛–onto→(𝑓 “ 𝑛)) |
| 63 | 58, 62 | syl 14 |
. . . . . . . . . . . . . 14
⊢ (((𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → ∃𝑔 𝑔:𝑛–onto→(𝑓 “ 𝑛)) |
| 64 | | foeq2 5477 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 = 𝑛 → (𝑔:𝑚–onto→(𝑓 “ 𝑛) ↔ 𝑔:𝑛–onto→(𝑓 “ 𝑛))) |
| 65 | 64 | exbidv 1839 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = 𝑛 → (∃𝑔 𝑔:𝑚–onto→(𝑓 “ 𝑛) ↔ ∃𝑔 𝑔:𝑛–onto→(𝑓 “ 𝑛))) |
| 66 | 65 | rspcev 2868 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ ω ∧
∃𝑔 𝑔:𝑛–onto→(𝑓 “ 𝑛)) → ∃𝑚 ∈ ω ∃𝑔 𝑔:𝑚–onto→(𝑓 “ 𝑛)) |
| 67 | 46, 63, 66 | syl2anc 411 |
. . . . . . . . . . . . 13
⊢ (((𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → ∃𝑚 ∈ ω ∃𝑔 𝑔:𝑚–onto→(𝑓 “ 𝑛)) |
| 68 | 67 | 3adantl1 1155 |
. . . . . . . . . . . 12
⊢
(((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → ∃𝑚 ∈ ω ∃𝑔 𝑔:𝑚–onto→(𝑓 “ 𝑛)) |
| 69 | | fidcenum 7022 |
. . . . . . . . . . . 12
⊢ ((𝑓 “ 𝑛) ∈ Fin ↔ (∀𝑎 ∈ (𝑓 “ 𝑛)∀𝑏 ∈ (𝑓 “ 𝑛)DECID 𝑎 = 𝑏 ∧ ∃𝑚 ∈ ω ∃𝑔 𝑔:𝑚–onto→(𝑓 “ 𝑛))) |
| 70 | 45, 68, 69 | sylanbrc 417 |
. . . . . . . . . . 11
⊢
(((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → (𝑓 “ 𝑛) ∈ Fin) |
| 71 | 24, 25, 32, 70 | inffinp1 12646 |
. . . . . . . . . 10
⊢
(((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → ∃𝑢 ∈ 𝐴 ¬ 𝑢 ∈ (𝑓 “ 𝑛)) |
| 72 | | simprl 529 |
. . . . . . . . . . . 12
⊢
((((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) ∧ (𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ∈ (𝑓 “ 𝑛))) → 𝑢 ∈ 𝐴) |
| 73 | | foelrn 5799 |
. . . . . . . . . . . 12
⊢ ((𝑓:ω–onto→𝐴 ∧ 𝑢 ∈ 𝐴) → ∃𝑘 ∈ ω 𝑢 = (𝑓‘𝑘)) |
| 74 | 33, 72, 73 | syl2an2r 595 |
. . . . . . . . . . 11
⊢
((((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) ∧ (𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ∈ (𝑓 “ 𝑛))) → ∃𝑘 ∈ ω 𝑢 = (𝑓‘𝑘)) |
| 75 | | simpr 110 |
. . . . . . . . . . . . . 14
⊢
((((((∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) ∧ (𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ∈ (𝑓 “ 𝑛))) ∧ 𝑘 ∈ ω) ∧ 𝑢 = (𝑓‘𝑘)) → 𝑢 = (𝑓‘𝑘)) |
| 76 | | simprr 531 |
. . . . . . . . . . . . . . 15
⊢
((((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) ∧ (𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ∈ (𝑓 “ 𝑛))) → ¬ 𝑢 ∈ (𝑓 “ 𝑛)) |
| 77 | 76 | ad2antrr 488 |
. . . . . . . . . . . . . 14
⊢
((((((∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) ∧ (𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ∈ (𝑓 “ 𝑛))) ∧ 𝑘 ∈ ω) ∧ 𝑢 = (𝑓‘𝑘)) → ¬ 𝑢 ∈ (𝑓 “ 𝑛)) |
| 78 | 75, 77 | eqneltrrd 2293 |
. . . . . . . . . . . . 13
⊢
((((((∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) ∧ (𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ∈ (𝑓 “ 𝑛))) ∧ 𝑘 ∈ ω) ∧ 𝑢 = (𝑓‘𝑘)) → ¬ (𝑓‘𝑘) ∈ (𝑓 “ 𝑛)) |
| 79 | 78 | ex 115 |
. . . . . . . . . . . 12
⊢
(((((∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) ∧ (𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ∈ (𝑓 “ 𝑛))) ∧ 𝑘 ∈ ω) → (𝑢 = (𝑓‘𝑘) → ¬ (𝑓‘𝑘) ∈ (𝑓 “ 𝑛))) |
| 80 | 79 | reximdva 2599 |
. . . . . . . . . . 11
⊢
((((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) ∧ (𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ∈ (𝑓 “ 𝑛))) → (∃𝑘 ∈ ω 𝑢 = (𝑓‘𝑘) → ∃𝑘 ∈ ω ¬ (𝑓‘𝑘) ∈ (𝑓 “ 𝑛))) |
| 81 | 74, 80 | mpd 13 |
. . . . . . . . . 10
⊢
((((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) ∧ (𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ∈ (𝑓 “ 𝑛))) → ∃𝑘 ∈ ω ¬ (𝑓‘𝑘) ∈ (𝑓 “ 𝑛)) |
| 82 | 71, 81 | rexlimddv 2619 |
. . . . . . . . 9
⊢
(((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → ∃𝑘 ∈ ω ¬ (𝑓‘𝑘) ∈ (𝑓 “ 𝑛)) |
| 83 | 82 | ralrimiva 2570 |
. . . . . . . 8
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓‘𝑘) ∈ (𝑓 “ 𝑛)) |
| 84 | 18, 83 | jca 306 |
. . . . . . 7
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) → (𝑓:ω–onto→𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓‘𝑘) ∈ (𝑓 “ 𝑛))) |
| 85 | 84 | 3com23 1211 |
. . . . . 6
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴 ∧ 𝑓:ω–onto→𝐴) → (𝑓:ω–onto→𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓‘𝑘) ∈ (𝑓 “ 𝑛))) |
| 86 | 85 | 3expia 1207 |
. . . . 5
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴) → (𝑓:ω–onto→𝐴 → (𝑓:ω–onto→𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓‘𝑘) ∈ (𝑓 “ 𝑛)))) |
| 87 | 86 | eximdv 1894 |
. . . 4
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴) → (∃𝑓 𝑓:ω–onto→𝐴 → ∃𝑓(𝑓:ω–onto→𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓‘𝑘) ∈ (𝑓 “ 𝑛)))) |
| 88 | 16, 17, 87 | sylc 62 |
. . 3
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓 𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) → ∃𝑓(𝑓:ω–onto→𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓‘𝑘) ∈ (𝑓 “ 𝑛))) |
| 89 | 15, 88, 1 | sylanbrc 417 |
. 2
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓 𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴) → 𝐴 ≈ ℕ) |
| 90 | 14, 89 | impbii 126 |
1
⊢ (𝐴 ≈ ℕ ↔
(∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓 𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴)) |