ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lssvancl2 GIF version

Theorem lssvancl2 13864
Description: Non-closure: if one vector belongs to a subspace but another does not, their sum does not belong. Useful for obtaining a new vector not in a subspace. (Contributed by NM, 20-May-2015.)
Hypotheses
Ref Expression
lssvancl.v 𝑉 = (Base‘𝑊)
lssvancl.p + = (+g𝑊)
lssvancl.s 𝑆 = (LSubSp‘𝑊)
lssvancl.w (𝜑𝑊 ∈ LMod)
lssvancl.u (𝜑𝑈𝑆)
lssvancl.x (𝜑𝑋𝑈)
lssvancl.y (𝜑𝑌𝑉)
lssvancl.n (𝜑 → ¬ 𝑌𝑈)
Assertion
Ref Expression
lssvancl2 (𝜑 → ¬ (𝑌 + 𝑋) ∈ 𝑈)

Proof of Theorem lssvancl2
StepHypRef Expression
1 lssvancl.w . . 3 (𝜑𝑊 ∈ LMod)
2 lssvancl.u . . . 4 (𝜑𝑈𝑆)
3 lssvancl.x . . . 4 (𝜑𝑋𝑈)
4 lssvancl.v . . . . 5 𝑉 = (Base‘𝑊)
5 lssvancl.s . . . . 5 𝑆 = (LSubSp‘𝑊)
64, 5lsselg 13857 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑋𝑈) → 𝑋𝑉)
71, 2, 3, 6syl3anc 1249 . . 3 (𝜑𝑋𝑉)
8 lssvancl.y . . 3 (𝜑𝑌𝑉)
9 lssvancl.p . . . 4 + = (+g𝑊)
104, 9lmodcom 13829 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
111, 7, 8, 10syl3anc 1249 . 2 (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋))
12 lssvancl.n . . 3 (𝜑 → ¬ 𝑌𝑈)
134, 9, 5, 1, 2, 3, 8, 12lssvancl1 13863 . 2 (𝜑 → ¬ (𝑋 + 𝑌) ∈ 𝑈)
1411, 13eqneltrrd 2290 1 (𝜑 → ¬ (𝑌 + 𝑋) ∈ 𝑈)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1364  wcel 2164  cfv 5254  (class class class)co 5918  Basecbs 12618  +gcplusg 12695  LModclmod 13783  LSubSpclss 13848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-plusg 12708  df-mulr 12709  df-sca 12711  df-vsca 12712  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076  df-sbg 13077  df-cmn 13356  df-abl 13357  df-mgp 13417  df-ur 13456  df-ring 13494  df-lmod 13785  df-lssm 13849
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator