Proof of Theorem equveli
Step | Hyp | Ref
| Expression |
1 | | albiim 1475 |
. 2
⊢
(∀𝑧(𝑧 = 𝑥 ↔ 𝑧 = 𝑦) ↔ (∀𝑧(𝑧 = 𝑥 → 𝑧 = 𝑦) ∧ ∀𝑧(𝑧 = 𝑦 → 𝑧 = 𝑥))) |
2 | | ax12or 1496 |
. . 3
⊢
(∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) |
3 | | equequ1 1700 |
. . . . . . . . 9
⊢ (𝑧 = 𝑥 → (𝑧 = 𝑥 ↔ 𝑥 = 𝑥)) |
4 | | equequ1 1700 |
. . . . . . . . 9
⊢ (𝑧 = 𝑥 → (𝑧 = 𝑦 ↔ 𝑥 = 𝑦)) |
5 | 3, 4 | imbi12d 233 |
. . . . . . . 8
⊢ (𝑧 = 𝑥 → ((𝑧 = 𝑥 → 𝑧 = 𝑦) ↔ (𝑥 = 𝑥 → 𝑥 = 𝑦))) |
6 | 5 | sps 1525 |
. . . . . . 7
⊢
(∀𝑧 𝑧 = 𝑥 → ((𝑧 = 𝑥 → 𝑧 = 𝑦) ↔ (𝑥 = 𝑥 → 𝑥 = 𝑦))) |
7 | 6 | dral2 1719 |
. . . . . 6
⊢
(∀𝑧 𝑧 = 𝑥 → (∀𝑧(𝑧 = 𝑥 → 𝑧 = 𝑦) ↔ ∀𝑧(𝑥 = 𝑥 → 𝑥 = 𝑦))) |
8 | | equid 1689 |
. . . . . . . . 9
⊢ 𝑥 = 𝑥 |
9 | 8 | a1bi 242 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 ↔ (𝑥 = 𝑥 → 𝑥 = 𝑦)) |
10 | 9 | biimpri 132 |
. . . . . . 7
⊢ ((𝑥 = 𝑥 → 𝑥 = 𝑦) → 𝑥 = 𝑦) |
11 | 10 | sps 1525 |
. . . . . 6
⊢
(∀𝑧(𝑥 = 𝑥 → 𝑥 = 𝑦) → 𝑥 = 𝑦) |
12 | 7, 11 | syl6bi 162 |
. . . . 5
⊢
(∀𝑧 𝑧 = 𝑥 → (∀𝑧(𝑧 = 𝑥 → 𝑧 = 𝑦) → 𝑥 = 𝑦)) |
13 | 12 | adantrd 277 |
. . . 4
⊢
(∀𝑧 𝑧 = 𝑥 → ((∀𝑧(𝑧 = 𝑥 → 𝑧 = 𝑦) ∧ ∀𝑧(𝑧 = 𝑦 → 𝑧 = 𝑥)) → 𝑥 = 𝑦)) |
14 | | equequ1 1700 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑦 → (𝑧 = 𝑦 ↔ 𝑦 = 𝑦)) |
15 | | equequ1 1700 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑦 → (𝑧 = 𝑥 ↔ 𝑦 = 𝑥)) |
16 | 14, 15 | imbi12d 233 |
. . . . . . . . 9
⊢ (𝑧 = 𝑦 → ((𝑧 = 𝑦 → 𝑧 = 𝑥) ↔ (𝑦 = 𝑦 → 𝑦 = 𝑥))) |
17 | 16 | sps 1525 |
. . . . . . . 8
⊢
(∀𝑧 𝑧 = 𝑦 → ((𝑧 = 𝑦 → 𝑧 = 𝑥) ↔ (𝑦 = 𝑦 → 𝑦 = 𝑥))) |
18 | 17 | dral1 1718 |
. . . . . . 7
⊢
(∀𝑧 𝑧 = 𝑦 → (∀𝑧(𝑧 = 𝑦 → 𝑧 = 𝑥) ↔ ∀𝑦(𝑦 = 𝑦 → 𝑦 = 𝑥))) |
19 | | equid 1689 |
. . . . . . . . 9
⊢ 𝑦 = 𝑦 |
20 | | ax-4 1498 |
. . . . . . . . 9
⊢
(∀𝑦(𝑦 = 𝑦 → 𝑦 = 𝑥) → (𝑦 = 𝑦 → 𝑦 = 𝑥)) |
21 | 19, 20 | mpi 15 |
. . . . . . . 8
⊢
(∀𝑦(𝑦 = 𝑦 → 𝑦 = 𝑥) → 𝑦 = 𝑥) |
22 | | equcomi 1692 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) |
23 | 21, 22 | syl 14 |
. . . . . . 7
⊢
(∀𝑦(𝑦 = 𝑦 → 𝑦 = 𝑥) → 𝑥 = 𝑦) |
24 | 18, 23 | syl6bi 162 |
. . . . . 6
⊢
(∀𝑧 𝑧 = 𝑦 → (∀𝑧(𝑧 = 𝑦 → 𝑧 = 𝑥) → 𝑥 = 𝑦)) |
25 | 24 | adantld 276 |
. . . . 5
⊢
(∀𝑧 𝑧 = 𝑦 → ((∀𝑧(𝑧 = 𝑥 → 𝑧 = 𝑦) ∧ ∀𝑧(𝑧 = 𝑦 → 𝑧 = 𝑥)) → 𝑥 = 𝑦)) |
26 | | hba1 1528 |
. . . . . . . . . 10
⊢
(∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦) → ∀𝑧∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) |
27 | | hbequid 1501 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑥 → ∀𝑧 𝑥 = 𝑥) |
28 | 27 | a1i 9 |
. . . . . . . . . 10
⊢
(∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦) → (𝑥 = 𝑥 → ∀𝑧 𝑥 = 𝑥)) |
29 | | ax-4 1498 |
. . . . . . . . . 10
⊢
(∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦) → (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) |
30 | 26, 28, 29 | hbimd 1561 |
. . . . . . . . 9
⊢
(∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦) → ((𝑥 = 𝑥 → 𝑥 = 𝑦) → ∀𝑧(𝑥 = 𝑥 → 𝑥 = 𝑦))) |
31 | 30 | a5i 1531 |
. . . . . . . 8
⊢
(∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦) → ∀𝑧((𝑥 = 𝑥 → 𝑥 = 𝑦) → ∀𝑧(𝑥 = 𝑥 → 𝑥 = 𝑦))) |
32 | | equtr 1697 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑥 → (𝑥 = 𝑥 → 𝑧 = 𝑥)) |
33 | | ax-8 1492 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑥 → (𝑧 = 𝑦 → 𝑥 = 𝑦)) |
34 | 32, 33 | imim12d 74 |
. . . . . . . . 9
⊢ (𝑧 = 𝑥 → ((𝑧 = 𝑥 → 𝑧 = 𝑦) → (𝑥 = 𝑥 → 𝑥 = 𝑦))) |
35 | 34 | ax-gen 1437 |
. . . . . . . 8
⊢
∀𝑧(𝑧 = 𝑥 → ((𝑧 = 𝑥 → 𝑧 = 𝑦) → (𝑥 = 𝑥 → 𝑥 = 𝑦))) |
36 | | 19.26 1469 |
. . . . . . . . 9
⊢
(∀𝑧(((𝑥 = 𝑥 → 𝑥 = 𝑦) → ∀𝑧(𝑥 = 𝑥 → 𝑥 = 𝑦)) ∧ (𝑧 = 𝑥 → ((𝑧 = 𝑥 → 𝑧 = 𝑦) → (𝑥 = 𝑥 → 𝑥 = 𝑦)))) ↔ (∀𝑧((𝑥 = 𝑥 → 𝑥 = 𝑦) → ∀𝑧(𝑥 = 𝑥 → 𝑥 = 𝑦)) ∧ ∀𝑧(𝑧 = 𝑥 → ((𝑧 = 𝑥 → 𝑧 = 𝑦) → (𝑥 = 𝑥 → 𝑥 = 𝑦))))) |
37 | | spimth 1723 |
. . . . . . . . 9
⊢
(∀𝑧(((𝑥 = 𝑥 → 𝑥 = 𝑦) → ∀𝑧(𝑥 = 𝑥 → 𝑥 = 𝑦)) ∧ (𝑧 = 𝑥 → ((𝑧 = 𝑥 → 𝑧 = 𝑦) → (𝑥 = 𝑥 → 𝑥 = 𝑦)))) → (∀𝑧(𝑧 = 𝑥 → 𝑧 = 𝑦) → (𝑥 = 𝑥 → 𝑥 = 𝑦))) |
38 | 36, 37 | sylbir 134 |
. . . . . . . 8
⊢
((∀𝑧((𝑥 = 𝑥 → 𝑥 = 𝑦) → ∀𝑧(𝑥 = 𝑥 → 𝑥 = 𝑦)) ∧ ∀𝑧(𝑧 = 𝑥 → ((𝑧 = 𝑥 → 𝑧 = 𝑦) → (𝑥 = 𝑥 → 𝑥 = 𝑦)))) → (∀𝑧(𝑧 = 𝑥 → 𝑧 = 𝑦) → (𝑥 = 𝑥 → 𝑥 = 𝑦))) |
39 | 31, 35, 38 | sylancl 410 |
. . . . . . 7
⊢
(∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦) → (∀𝑧(𝑧 = 𝑥 → 𝑧 = 𝑦) → (𝑥 = 𝑥 → 𝑥 = 𝑦))) |
40 | 8, 39 | mpii 44 |
. . . . . 6
⊢
(∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦) → (∀𝑧(𝑧 = 𝑥 → 𝑧 = 𝑦) → 𝑥 = 𝑦)) |
41 | 40 | adantrd 277 |
. . . . 5
⊢
(∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦) → ((∀𝑧(𝑧 = 𝑥 → 𝑧 = 𝑦) ∧ ∀𝑧(𝑧 = 𝑦 → 𝑧 = 𝑥)) → 𝑥 = 𝑦)) |
42 | 25, 41 | jaoi 706 |
. . . 4
⊢
((∀𝑧 𝑧 = 𝑦 ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) → ((∀𝑧(𝑧 = 𝑥 → 𝑧 = 𝑦) ∧ ∀𝑧(𝑧 = 𝑦 → 𝑧 = 𝑥)) → 𝑥 = 𝑦)) |
43 | 13, 42 | jaoi 706 |
. . 3
⊢
((∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) → ((∀𝑧(𝑧 = 𝑥 → 𝑧 = 𝑦) ∧ ∀𝑧(𝑧 = 𝑦 → 𝑧 = 𝑥)) → 𝑥 = 𝑦)) |
44 | 2, 43 | ax-mp 5 |
. 2
⊢
((∀𝑧(𝑧 = 𝑥 → 𝑧 = 𝑦) ∧ ∀𝑧(𝑧 = 𝑦 → 𝑧 = 𝑥)) → 𝑥 = 𝑦) |
45 | 1, 44 | sylbi 120 |
1
⊢
(∀𝑧(𝑧 = 𝑥 ↔ 𝑧 = 𝑦) → 𝑥 = 𝑦) |