ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  excom13 GIF version

Theorem excom13 1699
Description: Swap 1st and 3rd existential quantifiers. (Contributed by NM, 9-Mar-1995.)
Assertion
Ref Expression
excom13 (∃𝑥𝑦𝑧𝜑 ↔ ∃𝑧𝑦𝑥𝜑)

Proof of Theorem excom13
StepHypRef Expression
1 excom 1674 . 2 (∃𝑥𝑦𝑧𝜑 ↔ ∃𝑦𝑥𝑧𝜑)
2 excom 1674 . . 3 (∃𝑥𝑧𝜑 ↔ ∃𝑧𝑥𝜑)
32exbii 1615 . 2 (∃𝑦𝑥𝑧𝜑 ↔ ∃𝑦𝑧𝑥𝜑)
4 excom 1674 . 2 (∃𝑦𝑧𝑥𝜑 ↔ ∃𝑧𝑦𝑥𝜑)
51, 3, 43bitri 206 1 (∃𝑥𝑦𝑧𝜑 ↔ ∃𝑧𝑦𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wb 105  wex 1502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-4 1520  ax-ial 1544
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  exrot3  1700  exrot4  1701  euotd  4266
  Copyright terms: Public domain W3C validator