![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > exrot3 | GIF version |
Description: Rotate existential quantifiers. (Contributed by NM, 17-Mar-1995.) |
Ref | Expression |
---|---|
exrot3 | ⊢ (∃𝑥∃𝑦∃𝑧𝜑 ↔ ∃𝑦∃𝑧∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | excom13 1699 | . 2 ⊢ (∃𝑥∃𝑦∃𝑧𝜑 ↔ ∃𝑧∃𝑦∃𝑥𝜑) | |
2 | excom 1674 | . 2 ⊢ (∃𝑧∃𝑦∃𝑥𝜑 ↔ ∃𝑦∃𝑧∃𝑥𝜑) | |
3 | 1, 2 | bitri 184 | 1 ⊢ (∃𝑥∃𝑦∃𝑧𝜑 ↔ ∃𝑦∃𝑧∃𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∃wex 1502 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-4 1520 ax-ial 1544 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: opabm 4292 rexiunxp 4781 dmoprab 5969 rnoprab 5971 cnvoprab 6249 xpassen 6844 dmaddpq 7392 dmmulpq 7393 |
Copyright terms: Public domain | W3C validator |