![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > exrot3 | GIF version |
Description: Rotate existential quantifiers. (Contributed by NM, 17-Mar-1995.) |
Ref | Expression |
---|---|
exrot3 | ⊢ (∃𝑥∃𝑦∃𝑧𝜑 ↔ ∃𝑦∃𝑧∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | excom13 1625 | . 2 ⊢ (∃𝑥∃𝑦∃𝑧𝜑 ↔ ∃𝑧∃𝑦∃𝑥𝜑) | |
2 | excom 1600 | . 2 ⊢ (∃𝑧∃𝑦∃𝑥𝜑 ↔ ∃𝑦∃𝑧∃𝑥𝜑) | |
3 | 1, 2 | bitri 183 | 1 ⊢ (∃𝑥∃𝑦∃𝑧𝜑 ↔ ∃𝑦∃𝑧∃𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∃wex 1427 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-4 1446 ax-ial 1473 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: opabm 4118 rexiunxp 4593 dmoprab 5745 rnoprab 5747 cnvoprab 6015 xpassen 6602 dmaddpq 7001 dmmulpq 7002 |
Copyright terms: Public domain | W3C validator |