ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exrot4 GIF version

Theorem exrot4 1715
Description: Rotate existential quantifiers twice. (Contributed by NM, 9-Mar-1995.)
Assertion
Ref Expression
exrot4 (∃𝑥𝑦𝑧𝑤𝜑 ↔ ∃𝑧𝑤𝑥𝑦𝜑)

Proof of Theorem exrot4
StepHypRef Expression
1 excom13 1713 . . 3 (∃𝑦𝑧𝑤𝜑 ↔ ∃𝑤𝑧𝑦𝜑)
21exbii 1629 . 2 (∃𝑥𝑦𝑧𝑤𝜑 ↔ ∃𝑥𝑤𝑧𝑦𝜑)
3 excom13 1713 . 2 (∃𝑥𝑤𝑧𝑦𝜑 ↔ ∃𝑧𝑤𝑥𝑦𝜑)
42, 3bitri 184 1 (∃𝑥𝑦𝑧𝑤𝜑 ↔ ∃𝑧𝑤𝑥𝑦𝜑)
Colors of variables: wff set class
Syntax hints:  wb 105  wex 1516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-4 1534  ax-ial 1558
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  ee8anv  1964  elvvv  4746  dfoprab2  6005  xpassen  6940  enq0sym  7565
  Copyright terms: Public domain W3C validator