![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > exrot4 | GIF version |
Description: Rotate existential quantifiers twice. (Contributed by NM, 9-Mar-1995.) |
Ref | Expression |
---|---|
exrot4 | ⊢ (∃𝑥∃𝑦∃𝑧∃𝑤𝜑 ↔ ∃𝑧∃𝑤∃𝑥∃𝑦𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | excom13 1624 | . . 3 ⊢ (∃𝑦∃𝑧∃𝑤𝜑 ↔ ∃𝑤∃𝑧∃𝑦𝜑) | |
2 | 1 | exbii 1541 | . 2 ⊢ (∃𝑥∃𝑦∃𝑧∃𝑤𝜑 ↔ ∃𝑥∃𝑤∃𝑧∃𝑦𝜑) |
3 | excom13 1624 | . 2 ⊢ (∃𝑥∃𝑤∃𝑧∃𝑦𝜑 ↔ ∃𝑧∃𝑤∃𝑥∃𝑦𝜑) | |
4 | 2, 3 | bitri 182 | 1 ⊢ (∃𝑥∃𝑦∃𝑧∃𝑤𝜑 ↔ ∃𝑧∃𝑤∃𝑥∃𝑦𝜑) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 103 ∃wex 1426 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-4 1445 ax-ial 1472 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: ee8anv 1858 elvvv 4501 dfoprab2 5696 xpassen 6544 enq0sym 6989 |
Copyright terms: Public domain | W3C validator |