ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exrot4 GIF version

Theorem exrot4 1705
Description: Rotate existential quantifiers twice. (Contributed by NM, 9-Mar-1995.)
Assertion
Ref Expression
exrot4 (∃𝑥𝑦𝑧𝑤𝜑 ↔ ∃𝑧𝑤𝑥𝑦𝜑)

Proof of Theorem exrot4
StepHypRef Expression
1 excom13 1703 . . 3 (∃𝑦𝑧𝑤𝜑 ↔ ∃𝑤𝑧𝑦𝜑)
21exbii 1619 . 2 (∃𝑥𝑦𝑧𝑤𝜑 ↔ ∃𝑥𝑤𝑧𝑦𝜑)
3 excom13 1703 . 2 (∃𝑥𝑤𝑧𝑦𝜑 ↔ ∃𝑧𝑤𝑥𝑦𝜑)
42, 3bitri 184 1 (∃𝑥𝑦𝑧𝑤𝜑 ↔ ∃𝑧𝑤𝑥𝑦𝜑)
Colors of variables: wff set class
Syntax hints:  wb 105  wex 1506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-ial 1548
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  ee8anv  1954  elvvv  4726  dfoprab2  5969  xpassen  6889  enq0sym  7499
  Copyright terms: Public domain W3C validator