![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > excom | GIF version |
Description: Theorem 19.11 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
excom | ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | excomim 1674 | . 2 ⊢ (∃𝑥∃𝑦𝜑 → ∃𝑦∃𝑥𝜑) | |
2 | excomim 1674 | . 2 ⊢ (∃𝑦∃𝑥𝜑 → ∃𝑥∃𝑦𝜑) | |
3 | 1, 2 | impbii 126 | 1 ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∃wex 1503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-ial 1545 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: excom13 1700 exrot3 1701 ee4anv 1950 sbexyz 2019 2exsb 2025 2euex 2129 2exeu 2134 2eu4 2135 rexcomf 2656 gencbvex 2806 euxfr2dc 2945 euind 2947 sbccomlem 3060 opelopabsbALT 4289 uniuni 4482 elvvv 4722 elco 4828 dmuni 4872 dm0rn0 4879 dmmrnm 4881 dmcosseq 4933 elres 4978 rnco 5172 coass 5184 oprabid 5950 dfoprab2 5965 opabex3d 6173 opabex3 6174 cnvoprab 6287 domen 6805 xpassen 6884 prarloc 7563 fisumcom2 11581 fprodcom2fi 11769 |
Copyright terms: Public domain | W3C validator |