| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > excom | GIF version | ||
| Description: Theorem 19.11 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| excom | ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | excomim 1709 | . 2 ⊢ (∃𝑥∃𝑦𝜑 → ∃𝑦∃𝑥𝜑) | |
| 2 | excomim 1709 | . 2 ⊢ (∃𝑦∃𝑥𝜑 → ∃𝑥∃𝑦𝜑) | |
| 3 | 1, 2 | impbii 126 | 1 ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∃wex 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-ial 1580 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: excom13 1735 exrot3 1736 ee4anv 1985 sbexyz 2054 2exsb 2060 2euex 2165 2exeu 2170 2eu4 2171 rexcomf 2693 gencbvex 2847 euxfr2dc 2988 euind 2990 sbccomlem 3103 opelopabsbALT 4346 uniuni 4541 elvvv 4781 elco 4887 dmuni 4932 dm0rn0 4939 dmmrnm 4942 dmcosseq 4995 elres 5040 rnco 5234 coass 5246 oprabid 6032 dfoprab2 6050 opabex3d 6264 opabex3 6265 cnvoprab 6378 domen 6898 xpassen 6985 prarloc 7686 fisumcom2 11944 fprodcom2fi 12132 |
| Copyright terms: Public domain | W3C validator |