| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > excom | GIF version | ||
| Description: Theorem 19.11 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| excom | ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | excomim 1687 | . 2 ⊢ (∃𝑥∃𝑦𝜑 → ∃𝑦∃𝑥𝜑) | |
| 2 | excomim 1687 | . 2 ⊢ (∃𝑦∃𝑥𝜑 → ∃𝑥∃𝑦𝜑) | |
| 3 | 1, 2 | impbii 126 | 1 ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∃wex 1516 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: excom13 1713 exrot3 1714 ee4anv 1963 sbexyz 2032 2exsb 2038 2euex 2142 2exeu 2147 2eu4 2148 rexcomf 2669 gencbvex 2821 euxfr2dc 2962 euind 2964 sbccomlem 3077 opelopabsbALT 4313 uniuni 4506 elvvv 4746 elco 4852 dmuni 4897 dm0rn0 4904 dmmrnm 4906 dmcosseq 4959 elres 5004 rnco 5198 coass 5210 oprabid 5989 dfoprab2 6005 opabex3d 6219 opabex3 6220 cnvoprab 6333 domen 6853 xpassen 6940 prarloc 7636 fisumcom2 11824 fprodcom2fi 12012 |
| Copyright terms: Public domain | W3C validator |