ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  excom GIF version

Theorem excom 1688
Description: Theorem 19.11 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
excom (∃𝑥𝑦𝜑 ↔ ∃𝑦𝑥𝜑)

Proof of Theorem excom
StepHypRef Expression
1 excomim 1687 . 2 (∃𝑥𝑦𝜑 → ∃𝑦𝑥𝜑)
2 excomim 1687 . 2 (∃𝑦𝑥𝜑 → ∃𝑥𝑦𝜑)
31, 2impbii 126 1 (∃𝑥𝑦𝜑 ↔ ∃𝑦𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wb 105  wex 1516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-4 1534  ax-ial 1558
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  excom13  1713  exrot3  1714  ee4anv  1963  sbexyz  2032  2exsb  2038  2euex  2142  2exeu  2147  2eu4  2148  rexcomf  2669  gencbvex  2821  euxfr2dc  2962  euind  2964  sbccomlem  3077  opelopabsbALT  4313  uniuni  4506  elvvv  4746  elco  4852  dmuni  4897  dm0rn0  4904  dmmrnm  4906  dmcosseq  4959  elres  5004  rnco  5198  coass  5210  oprabid  5989  dfoprab2  6005  opabex3d  6219  opabex3  6220  cnvoprab  6333  domen  6853  xpassen  6940  prarloc  7636  fisumcom2  11824  fprodcom2fi  12012
  Copyright terms: Public domain W3C validator