![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > excom | GIF version |
Description: Theorem 19.11 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
excom | ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | excomim 1674 | . 2 ⊢ (∃𝑥∃𝑦𝜑 → ∃𝑦∃𝑥𝜑) | |
2 | excomim 1674 | . 2 ⊢ (∃𝑦∃𝑥𝜑 → ∃𝑥∃𝑦𝜑) | |
3 | 1, 2 | impbii 126 | 1 ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∃wex 1503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-ial 1545 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: excom13 1700 exrot3 1701 ee4anv 1950 sbexyz 2019 2exsb 2025 2euex 2129 2exeu 2134 2eu4 2135 rexcomf 2656 gencbvex 2807 euxfr2dc 2946 euind 2948 sbccomlem 3061 opelopabsbALT 4290 uniuni 4483 elvvv 4723 elco 4829 dmuni 4873 dm0rn0 4880 dmmrnm 4882 dmcosseq 4934 elres 4979 rnco 5173 coass 5185 oprabid 5951 dfoprab2 5966 opabex3d 6175 opabex3 6176 cnvoprab 6289 domen 6807 xpassen 6886 prarloc 7565 fisumcom2 11584 fprodcom2fi 11772 |
Copyright terms: Public domain | W3C validator |