Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > excom | GIF version |
Description: Theorem 19.11 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
excom | ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | excomim 1651 | . 2 ⊢ (∃𝑥∃𝑦𝜑 → ∃𝑦∃𝑥𝜑) | |
2 | excomim 1651 | . 2 ⊢ (∃𝑦∃𝑥𝜑 → ∃𝑥∃𝑦𝜑) | |
3 | 1, 2 | impbii 125 | 1 ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∃wex 1480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: excom13 1677 exrot3 1678 ee4anv 1922 sbexyz 1991 2exsb 1997 2euex 2101 2exeu 2106 2eu4 2107 rexcomf 2628 gencbvex 2772 euxfr2dc 2911 euind 2913 sbccomlem 3025 opelopabsbALT 4237 uniuni 4429 elvvv 4667 elco 4770 dmuni 4814 dm0rn0 4821 dmmrnm 4823 dmcosseq 4875 elres 4920 rnco 5110 coass 5122 oprabid 5874 dfoprab2 5889 opabex3d 6089 opabex3 6090 cnvoprab 6202 domen 6717 xpassen 6796 prarloc 7444 fisumcom2 11379 fprodcom2fi 11567 |
Copyright terms: Public domain | W3C validator |