Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > excom | GIF version |
Description: Theorem 19.11 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
excom | ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | excomim 1656 | . 2 ⊢ (∃𝑥∃𝑦𝜑 → ∃𝑦∃𝑥𝜑) | |
2 | excomim 1656 | . 2 ⊢ (∃𝑦∃𝑥𝜑 → ∃𝑥∃𝑦𝜑) | |
3 | 1, 2 | impbii 125 | 1 ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∃wex 1485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: excom13 1682 exrot3 1683 ee4anv 1927 sbexyz 1996 2exsb 2002 2euex 2106 2exeu 2111 2eu4 2112 rexcomf 2632 gencbvex 2776 euxfr2dc 2915 euind 2917 sbccomlem 3029 opelopabsbALT 4244 uniuni 4436 elvvv 4674 elco 4777 dmuni 4821 dm0rn0 4828 dmmrnm 4830 dmcosseq 4882 elres 4927 rnco 5117 coass 5129 oprabid 5885 dfoprab2 5900 opabex3d 6100 opabex3 6101 cnvoprab 6213 domen 6729 xpassen 6808 prarloc 7465 fisumcom2 11401 fprodcom2fi 11589 |
Copyright terms: Public domain | W3C validator |