| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > excom | GIF version | ||
| Description: Theorem 19.11 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| excom | ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | excomim 1677 | . 2 ⊢ (∃𝑥∃𝑦𝜑 → ∃𝑦∃𝑥𝜑) | |
| 2 | excomim 1677 | . 2 ⊢ (∃𝑦∃𝑥𝜑 → ∃𝑥∃𝑦𝜑) | |
| 3 | 1, 2 | impbii 126 | 1 ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∃wex 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: excom13 1703 exrot3 1704 ee4anv 1953 sbexyz 2022 2exsb 2028 2euex 2132 2exeu 2137 2eu4 2138 rexcomf 2659 gencbvex 2810 euxfr2dc 2949 euind 2951 sbccomlem 3064 opelopabsbALT 4294 uniuni 4487 elvvv 4727 elco 4833 dmuni 4877 dm0rn0 4884 dmmrnm 4886 dmcosseq 4938 elres 4983 rnco 5177 coass 5189 oprabid 5957 dfoprab2 5973 opabex3d 6187 opabex3 6188 cnvoprab 6301 domen 6819 xpassen 6898 prarloc 7587 fisumcom2 11620 fprodcom2fi 11808 |
| Copyright terms: Public domain | W3C validator |