ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2euswapdc GIF version

Theorem 2euswapdc 2105
Description: A condition allowing swap of uniqueness and existential quantifiers. (Contributed by Jim Kingdon, 7-Jul-2018.)
Assertion
Ref Expression
2euswapdc (DECID𝑥𝑦𝜑 → (∀𝑥∃*𝑦𝜑 → (∃!𝑥𝑦𝜑 → ∃!𝑦𝑥𝜑)))

Proof of Theorem 2euswapdc
StepHypRef Expression
1 excomim 1651 . . . . 5 (∃𝑥𝑦𝜑 → ∃𝑦𝑥𝜑)
21a1i 9 . . . 4 ((DECID𝑥𝑦𝜑 ∧ ∀𝑥∃*𝑦𝜑) → (∃𝑥𝑦𝜑 → ∃𝑦𝑥𝜑))
3 2moswapdc 2104 . . . . 5 (DECID𝑥𝑦𝜑 → (∀𝑥∃*𝑦𝜑 → (∃*𝑥𝑦𝜑 → ∃*𝑦𝑥𝜑)))
43imp 123 . . . 4 ((DECID𝑥𝑦𝜑 ∧ ∀𝑥∃*𝑦𝜑) → (∃*𝑥𝑦𝜑 → ∃*𝑦𝑥𝜑))
52, 4anim12d 333 . . 3 ((DECID𝑥𝑦𝜑 ∧ ∀𝑥∃*𝑦𝜑) → ((∃𝑥𝑦𝜑 ∧ ∃*𝑥𝑦𝜑) → (∃𝑦𝑥𝜑 ∧ ∃*𝑦𝑥𝜑)))
6 eu5 2061 . . 3 (∃!𝑥𝑦𝜑 ↔ (∃𝑥𝑦𝜑 ∧ ∃*𝑥𝑦𝜑))
7 eu5 2061 . . 3 (∃!𝑦𝑥𝜑 ↔ (∃𝑦𝑥𝜑 ∧ ∃*𝑦𝑥𝜑))
85, 6, 73imtr4g 204 . 2 ((DECID𝑥𝑦𝜑 ∧ ∀𝑥∃*𝑦𝜑) → (∃!𝑥𝑦𝜑 → ∃!𝑦𝑥𝜑))
98ex 114 1 (DECID𝑥𝑦𝜑 → (∀𝑥∃*𝑦𝜑 → (∃!𝑥𝑦𝜑 → ∃!𝑦𝑥𝜑)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  DECID wdc 824  wal 1341  wex 1480  ∃!weu 2014  ∃*wmo 2015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-dc 825  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018
This theorem is referenced by:  euxfr2dc  2911  2reuswapdc  2930
  Copyright terms: Public domain W3C validator