ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2euswapdc GIF version

Theorem 2euswapdc 2128
Description: A condition allowing swap of uniqueness and existential quantifiers. (Contributed by Jim Kingdon, 7-Jul-2018.)
Assertion
Ref Expression
2euswapdc (DECID𝑥𝑦𝜑 → (∀𝑥∃*𝑦𝜑 → (∃!𝑥𝑦𝜑 → ∃!𝑦𝑥𝜑)))

Proof of Theorem 2euswapdc
StepHypRef Expression
1 excomim 1673 . . . . 5 (∃𝑥𝑦𝜑 → ∃𝑦𝑥𝜑)
21a1i 9 . . . 4 ((DECID𝑥𝑦𝜑 ∧ ∀𝑥∃*𝑦𝜑) → (∃𝑥𝑦𝜑 → ∃𝑦𝑥𝜑))
3 2moswapdc 2127 . . . . 5 (DECID𝑥𝑦𝜑 → (∀𝑥∃*𝑦𝜑 → (∃*𝑥𝑦𝜑 → ∃*𝑦𝑥𝜑)))
43imp 124 . . . 4 ((DECID𝑥𝑦𝜑 ∧ ∀𝑥∃*𝑦𝜑) → (∃*𝑥𝑦𝜑 → ∃*𝑦𝑥𝜑))
52, 4anim12d 335 . . 3 ((DECID𝑥𝑦𝜑 ∧ ∀𝑥∃*𝑦𝜑) → ((∃𝑥𝑦𝜑 ∧ ∃*𝑥𝑦𝜑) → (∃𝑦𝑥𝜑 ∧ ∃*𝑦𝑥𝜑)))
6 eu5 2084 . . 3 (∃!𝑥𝑦𝜑 ↔ (∃𝑥𝑦𝜑 ∧ ∃*𝑥𝑦𝜑))
7 eu5 2084 . . 3 (∃!𝑦𝑥𝜑 ↔ (∃𝑦𝑥𝜑 ∧ ∃*𝑦𝑥𝜑))
85, 6, 73imtr4g 205 . 2 ((DECID𝑥𝑦𝜑 ∧ ∀𝑥∃*𝑦𝜑) → (∃!𝑥𝑦𝜑 → ∃!𝑦𝑥𝜑))
98ex 115 1 (DECID𝑥𝑦𝜑 → (∀𝑥∃*𝑦𝜑 → (∃!𝑥𝑦𝜑 → ∃!𝑦𝑥𝜑)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 835  wal 1361  wex 1502  ∃!weu 2037  ∃*wmo 2038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545
This theorem depends on definitions:  df-bi 117  df-dc 836  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2040  df-mo 2041
This theorem is referenced by:  euxfr2dc  2936  2reuswapdc  2955
  Copyright terms: Public domain W3C validator