Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2euswapdc | GIF version |
Description: A condition allowing swap of uniqueness and existential quantifiers. (Contributed by Jim Kingdon, 7-Jul-2018.) |
Ref | Expression |
---|---|
2euswapdc | ⊢ (DECID ∃𝑥∃𝑦𝜑 → (∀𝑥∃*𝑦𝜑 → (∃!𝑥∃𝑦𝜑 → ∃!𝑦∃𝑥𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | excomim 1651 | . . . . 5 ⊢ (∃𝑥∃𝑦𝜑 → ∃𝑦∃𝑥𝜑) | |
2 | 1 | a1i 9 | . . . 4 ⊢ ((DECID ∃𝑥∃𝑦𝜑 ∧ ∀𝑥∃*𝑦𝜑) → (∃𝑥∃𝑦𝜑 → ∃𝑦∃𝑥𝜑)) |
3 | 2moswapdc 2104 | . . . . 5 ⊢ (DECID ∃𝑥∃𝑦𝜑 → (∀𝑥∃*𝑦𝜑 → (∃*𝑥∃𝑦𝜑 → ∃*𝑦∃𝑥𝜑))) | |
4 | 3 | imp 123 | . . . 4 ⊢ ((DECID ∃𝑥∃𝑦𝜑 ∧ ∀𝑥∃*𝑦𝜑) → (∃*𝑥∃𝑦𝜑 → ∃*𝑦∃𝑥𝜑)) |
5 | 2, 4 | anim12d 333 | . . 3 ⊢ ((DECID ∃𝑥∃𝑦𝜑 ∧ ∀𝑥∃*𝑦𝜑) → ((∃𝑥∃𝑦𝜑 ∧ ∃*𝑥∃𝑦𝜑) → (∃𝑦∃𝑥𝜑 ∧ ∃*𝑦∃𝑥𝜑))) |
6 | eu5 2061 | . . 3 ⊢ (∃!𝑥∃𝑦𝜑 ↔ (∃𝑥∃𝑦𝜑 ∧ ∃*𝑥∃𝑦𝜑)) | |
7 | eu5 2061 | . . 3 ⊢ (∃!𝑦∃𝑥𝜑 ↔ (∃𝑦∃𝑥𝜑 ∧ ∃*𝑦∃𝑥𝜑)) | |
8 | 5, 6, 7 | 3imtr4g 204 | . 2 ⊢ ((DECID ∃𝑥∃𝑦𝜑 ∧ ∀𝑥∃*𝑦𝜑) → (∃!𝑥∃𝑦𝜑 → ∃!𝑦∃𝑥𝜑)) |
9 | 8 | ex 114 | 1 ⊢ (DECID ∃𝑥∃𝑦𝜑 → (∀𝑥∃*𝑦𝜑 → (∃!𝑥∃𝑦𝜑 → ∃!𝑦∃𝑥𝜑))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 DECID wdc 824 ∀wal 1341 ∃wex 1480 ∃!weu 2014 ∃*wmo 2015 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 |
This theorem is referenced by: euxfr2dc 2911 2reuswapdc 2930 |
Copyright terms: Public domain | W3C validator |