ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2euswapdc GIF version

Theorem 2euswapdc 2117
Description: A condition allowing swap of uniqueness and existential quantifiers. (Contributed by Jim Kingdon, 7-Jul-2018.)
Assertion
Ref Expression
2euswapdc (DECID𝑥𝑦𝜑 → (∀𝑥∃*𝑦𝜑 → (∃!𝑥𝑦𝜑 → ∃!𝑦𝑥𝜑)))

Proof of Theorem 2euswapdc
StepHypRef Expression
1 excomim 1663 . . . . 5 (∃𝑥𝑦𝜑 → ∃𝑦𝑥𝜑)
21a1i 9 . . . 4 ((DECID𝑥𝑦𝜑 ∧ ∀𝑥∃*𝑦𝜑) → (∃𝑥𝑦𝜑 → ∃𝑦𝑥𝜑))
3 2moswapdc 2116 . . . . 5 (DECID𝑥𝑦𝜑 → (∀𝑥∃*𝑦𝜑 → (∃*𝑥𝑦𝜑 → ∃*𝑦𝑥𝜑)))
43imp 124 . . . 4 ((DECID𝑥𝑦𝜑 ∧ ∀𝑥∃*𝑦𝜑) → (∃*𝑥𝑦𝜑 → ∃*𝑦𝑥𝜑))
52, 4anim12d 335 . . 3 ((DECID𝑥𝑦𝜑 ∧ ∀𝑥∃*𝑦𝜑) → ((∃𝑥𝑦𝜑 ∧ ∃*𝑥𝑦𝜑) → (∃𝑦𝑥𝜑 ∧ ∃*𝑦𝑥𝜑)))
6 eu5 2073 . . 3 (∃!𝑥𝑦𝜑 ↔ (∃𝑥𝑦𝜑 ∧ ∃*𝑥𝑦𝜑))
7 eu5 2073 . . 3 (∃!𝑦𝑥𝜑 ↔ (∃𝑦𝑥𝜑 ∧ ∃*𝑦𝑥𝜑))
85, 6, 73imtr4g 205 . 2 ((DECID𝑥𝑦𝜑 ∧ ∀𝑥∃*𝑦𝜑) → (∃!𝑥𝑦𝜑 → ∃!𝑦𝑥𝜑))
98ex 115 1 (DECID𝑥𝑦𝜑 → (∀𝑥∃*𝑦𝜑 → (∃!𝑥𝑦𝜑 → ∃!𝑦𝑥𝜑)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 834  wal 1351  wex 1492  ∃!weu 2026  ∃*wmo 2027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535
This theorem depends on definitions:  df-bi 117  df-dc 835  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030
This theorem is referenced by:  euxfr2dc  2924  2reuswapdc  2943
  Copyright terms: Public domain W3C validator