ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2eximi GIF version

Theorem 2eximi 1647
Description: Inference adding 2 existential quantifiers to antecedent and consequent. (Contributed by NM, 3-Feb-2005.)
Hypothesis
Ref Expression
eximi.1 (𝜑𝜓)
Assertion
Ref Expression
2eximi (∃𝑥𝑦𝜑 → ∃𝑥𝑦𝜓)

Proof of Theorem 2eximi
StepHypRef Expression
1 eximi.1 . . 3 (𝜑𝜓)
21eximi 1646 . 2 (∃𝑦𝜑 → ∃𝑦𝜓)
32eximi 1646 1 (∃𝑥𝑦𝜑 → ∃𝑥𝑦𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wex 1538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-ial 1580
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  excomim  1709  cgsex2g  2836  cgsex4g  2837  vtocl2  2856  vtocl3  2857  dtruarb  4275  opelopabsb  4348  mosubopt  4784  xpmlem  5149  brabvv  6056  ssoprab2i  6099  dmaddpqlem  7572  nqpi  7573  dmaddpq  7574  dmmulpq  7575  enq0sym  7627  enq0ref  7628  enq0tr  7629  nq0nn  7637  prarloc  7698  bj-inex  16294
  Copyright terms: Public domain W3C validator