ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2eximi GIF version

Theorem 2eximi 1601
Description: Inference adding 2 existential quantifiers to antecedent and consequent. (Contributed by NM, 3-Feb-2005.)
Hypothesis
Ref Expression
eximi.1 (𝜑𝜓)
Assertion
Ref Expression
2eximi (∃𝑥𝑦𝜑 → ∃𝑥𝑦𝜓)

Proof of Theorem 2eximi
StepHypRef Expression
1 eximi.1 . . 3 (𝜑𝜓)
21eximi 1600 . 2 (∃𝑦𝜑 → ∃𝑦𝜓)
32eximi 1600 1 (∃𝑥𝑦𝜑 → ∃𝑥𝑦𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wex 1492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-4 1510  ax-ial 1534
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  excomim  1663  cgsex2g  2775  cgsex4g  2776  vtocl2  2794  vtocl3  2795  dtruarb  4193  opelopabsb  4262  mosubopt  4693  xpmlem  5051  brabvv  5923  ssoprab2i  5966  dmaddpqlem  7378  nqpi  7379  dmaddpq  7380  dmmulpq  7381  enq0sym  7433  enq0ref  7434  enq0tr  7435  nq0nn  7443  prarloc  7504  bj-inex  14698
  Copyright terms: Public domain W3C validator