Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2eximi | GIF version |
Description: Inference adding 2 existential quantifiers to antecedent and consequent. (Contributed by NM, 3-Feb-2005.) |
Ref | Expression |
---|---|
eximi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
2eximi | ⊢ (∃𝑥∃𝑦𝜑 → ∃𝑥∃𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eximi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | eximi 1588 | . 2 ⊢ (∃𝑦𝜑 → ∃𝑦𝜓) |
3 | 2 | eximi 1588 | 1 ⊢ (∃𝑥∃𝑦𝜑 → ∃𝑥∃𝑦𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃wex 1480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: excomim 1651 cgsex2g 2762 cgsex4g 2763 vtocl2 2781 vtocl3 2782 dtruarb 4170 opelopabsb 4238 mosubopt 4669 xpmlem 5024 brabvv 5888 ssoprab2i 5931 dmaddpqlem 7318 nqpi 7319 dmaddpq 7320 dmmulpq 7321 enq0sym 7373 enq0ref 7374 enq0tr 7375 nq0nn 7383 prarloc 7444 bj-inex 13789 |
Copyright terms: Public domain | W3C validator |