| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2eximi | GIF version | ||
| Description: Inference adding 2 existential quantifiers to antecedent and consequent. (Contributed by NM, 3-Feb-2005.) |
| Ref | Expression |
|---|---|
| eximi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| 2eximi | ⊢ (∃𝑥∃𝑦𝜑 → ∃𝑥∃𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eximi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | eximi 1626 | . 2 ⊢ (∃𝑦𝜑 → ∃𝑦𝜓) |
| 3 | 2 | eximi 1626 | 1 ⊢ (∃𝑥∃𝑦𝜑 → ∃𝑥∃𝑦𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∃wex 1518 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1473 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-4 1536 ax-ial 1560 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: excomim 1689 cgsex2g 2816 cgsex4g 2817 vtocl2 2836 vtocl3 2837 dtruarb 4254 opelopabsb 4327 mosubopt 4761 xpmlem 5125 brabvv 6021 ssoprab2i 6064 dmaddpqlem 7532 nqpi 7533 dmaddpq 7534 dmmulpq 7535 enq0sym 7587 enq0ref 7588 enq0tr 7589 nq0nn 7597 prarloc 7658 bj-inex 16180 |
| Copyright terms: Public domain | W3C validator |