![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2eximi | GIF version |
Description: Inference adding 2 existential quantifiers to antecedent and consequent. (Contributed by NM, 3-Feb-2005.) |
Ref | Expression |
---|---|
eximi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
2eximi | ⊢ (∃𝑥∃𝑦𝜑 → ∃𝑥∃𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eximi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | eximi 1562 | . 2 ⊢ (∃𝑦𝜑 → ∃𝑦𝜓) |
3 | 2 | eximi 1562 | 1 ⊢ (∃𝑥∃𝑦𝜑 → ∃𝑥∃𝑦𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃wex 1451 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1406 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-4 1470 ax-ial 1497 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: excomim 1624 cgsex2g 2693 cgsex4g 2694 vtocl2 2712 vtocl3 2713 dtruarb 4075 opelopabsb 4142 mosubopt 4564 xpmlem 4917 brabvv 5771 ssoprab2i 5814 dmaddpqlem 7133 nqpi 7134 dmaddpq 7135 dmmulpq 7136 enq0sym 7188 enq0ref 7189 enq0tr 7190 nq0nn 7198 prarloc 7259 bj-inex 12797 |
Copyright terms: Public domain | W3C validator |