ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2eximi GIF version

Theorem 2eximi 1612
Description: Inference adding 2 existential quantifiers to antecedent and consequent. (Contributed by NM, 3-Feb-2005.)
Hypothesis
Ref Expression
eximi.1 (𝜑𝜓)
Assertion
Ref Expression
2eximi (∃𝑥𝑦𝜑 → ∃𝑥𝑦𝜓)

Proof of Theorem 2eximi
StepHypRef Expression
1 eximi.1 . . 3 (𝜑𝜓)
21eximi 1611 . 2 (∃𝑦𝜑 → ∃𝑦𝜓)
32eximi 1611 1 (∃𝑥𝑦𝜑 → ∃𝑥𝑦𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wex 1503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-ial 1545
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  excomim  1674  cgsex2g  2796  cgsex4g  2797  vtocl2  2816  vtocl3  2817  dtruarb  4221  opelopabsb  4291  mosubopt  4725  xpmlem  5087  brabvv  5965  ssoprab2i  6008  dmaddpqlem  7439  nqpi  7440  dmaddpq  7441  dmmulpq  7442  enq0sym  7494  enq0ref  7495  enq0tr  7496  nq0nn  7504  prarloc  7565  bj-inex  15469
  Copyright terms: Public domain W3C validator