ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2eximi GIF version

Theorem 2eximi 1625
Description: Inference adding 2 existential quantifiers to antecedent and consequent. (Contributed by NM, 3-Feb-2005.)
Hypothesis
Ref Expression
eximi.1 (𝜑𝜓)
Assertion
Ref Expression
2eximi (∃𝑥𝑦𝜑 → ∃𝑥𝑦𝜓)

Proof of Theorem 2eximi
StepHypRef Expression
1 eximi.1 . . 3 (𝜑𝜓)
21eximi 1624 . 2 (∃𝑦𝜑 → ∃𝑦𝜓)
32eximi 1624 1 (∃𝑥𝑦𝜑 → ∃𝑥𝑦𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wex 1516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-4 1534  ax-ial 1558
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  excomim  1687  cgsex2g  2809  cgsex4g  2810  vtocl2  2829  vtocl3  2830  dtruarb  4239  opelopabsb  4310  mosubopt  4744  xpmlem  5108  brabvv  5998  ssoprab2i  6041  dmaddpqlem  7497  nqpi  7498  dmaddpq  7499  dmmulpq  7500  enq0sym  7552  enq0ref  7553  enq0tr  7554  nq0nn  7562  prarloc  7623  bj-inex  15917
  Copyright terms: Public domain W3C validator