Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fnfun | GIF version |
Description: A function with domain is a function. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
fnfun | ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fn 5191 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
2 | 1 | simplbi 272 | 1 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 dom cdm 4604 Fun wfun 5182 Fn wfn 5183 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 df-fn 5191 |
This theorem is referenced by: fnrel 5286 funfni 5288 fnco 5296 fnssresb 5300 ffun 5340 f1fun 5396 f1ofun 5434 fnbrfvb 5527 fvelimab 5542 fvun1 5552 elpreima 5604 respreima 5613 fconst3m 5704 fnfvima 5719 fnunirn 5735 f1eqcocnv 5759 fnexALT 6079 tfrlem4 6281 tfrlem5 6282 fndmeng 6776 caseinl 7056 caseinr 7057 cc2lem 7207 shftfn 10766 phimullem 12157 qnnen 12364 |
Copyright terms: Public domain | W3C validator |