Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fnfun | GIF version |
Description: A function with domain is a function. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
fnfun | ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fn 5201 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
2 | 1 | simplbi 272 | 1 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 dom cdm 4611 Fun wfun 5192 Fn wfn 5193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 df-fn 5201 |
This theorem is referenced by: fnrel 5296 funfni 5298 fnco 5306 fnssresb 5310 ffun 5350 f1fun 5406 f1ofun 5444 fnbrfvb 5537 fvelimab 5552 fvun1 5562 elpreima 5615 respreima 5624 fconst3m 5715 fnfvima 5730 fnunirn 5746 f1eqcocnv 5770 fnexALT 6090 tfrlem4 6292 tfrlem5 6293 fndmeng 6788 caseinl 7068 caseinr 7069 cc2lem 7228 shftfn 10788 phimullem 12179 qnnen 12386 |
Copyright terms: Public domain | W3C validator |