Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fnfun | GIF version |
Description: A function with domain is a function. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
fnfun | ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fn 5166 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
2 | 1 | simplbi 272 | 1 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1332 dom cdm 4579 Fun wfun 5157 Fn wfn 5158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 df-fn 5166 |
This theorem is referenced by: fnrel 5261 funfni 5263 fnco 5271 fnssresb 5275 ffun 5315 f1fun 5371 f1ofun 5409 fnbrfvb 5502 fvelimab 5517 fvun1 5527 elpreima 5579 respreima 5588 fconst3m 5679 fnfvima 5692 fnunirn 5708 f1eqcocnv 5732 fnexALT 6051 tfrlem4 6250 tfrlem5 6251 fndmeng 6744 caseinl 7021 caseinr 7022 cc2lem 7165 shftfn 10701 phimullem 12068 qnnen 12111 |
Copyright terms: Public domain | W3C validator |