| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnfun | GIF version | ||
| Description: A function with domain is a function. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| fnfun | ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fn 5261 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 dom cdm 4663 Fun wfun 5252 Fn wfn 5253 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-fn 5261 |
| This theorem is referenced by: fnrel 5356 funfni 5358 fnco 5366 fnssresb 5370 ffun 5410 f1fun 5466 f1ofun 5506 fnbrfvb 5601 fvelimab 5617 fvun1 5627 elpreima 5681 respreima 5690 fconst3m 5781 fnfvima 5797 fnunirn 5814 f1eqcocnv 5838 fnexALT 6168 tfrlem4 6371 tfrlem5 6372 fndmeng 6869 caseinl 7157 caseinr 7158 cc2lem 7333 shftfn 10989 phimullem 12393 qnnen 12648 prdsex 12940 imasaddvallemg 12958 lidlmex 14031 |
| Copyright terms: Public domain | W3C validator |