![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fnfun | GIF version |
Description: A function with domain is a function. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
fnfun | ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fn 5257 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
2 | 1 | simplbi 274 | 1 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 dom cdm 4659 Fun wfun 5248 Fn wfn 5249 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 df-fn 5257 |
This theorem is referenced by: fnrel 5352 funfni 5354 fnco 5362 fnssresb 5366 ffun 5406 f1fun 5462 f1ofun 5502 fnbrfvb 5597 fvelimab 5613 fvun1 5623 elpreima 5677 respreima 5686 fconst3m 5777 fnfvima 5793 fnunirn 5810 f1eqcocnv 5834 fnexALT 6163 tfrlem4 6366 tfrlem5 6367 fndmeng 6864 caseinl 7150 caseinr 7151 cc2lem 7326 shftfn 10968 phimullem 12363 qnnen 12588 prdsex 12880 imasaddvallemg 12898 lidlmex 13971 |
Copyright terms: Public domain | W3C validator |