| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnfun | GIF version | ||
| Description: A function with domain is a function. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| fnfun | ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fn 5317 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 dom cdm 4716 Fun wfun 5308 Fn wfn 5309 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-fn 5317 |
| This theorem is referenced by: fnrel 5415 funfni 5419 fnco 5427 fnssresb 5431 ffun 5472 f1fun 5530 f1ofun 5570 fnbrfvb 5666 fvelimab 5683 fvun1 5693 elpreima 5747 respreima 5756 fconst3m 5851 fnfvima 5867 fnunirn 5884 f1eqcocnv 5908 fnexALT 6246 tfrlem4 6449 tfrlem5 6450 fndmeng 6953 caseinl 7246 caseinr 7247 cc2lem 7440 shftfn 11321 phimullem 12733 qnnen 12988 prdsex 13288 prdsval 13292 prdsbaslemss 13293 imasaddvallemg 13334 lidlmex 14424 edgstruct 15849 upgredg 15927 |
| Copyright terms: Public domain | W3C validator |