| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnfun | GIF version | ||
| Description: A function with domain is a function. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| fnfun | ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fn 5262 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 dom cdm 4664 Fun wfun 5253 Fn wfn 5254 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-fn 5262 |
| This theorem is referenced by: fnrel 5357 funfni 5361 fnco 5369 fnssresb 5373 ffun 5413 f1fun 5469 f1ofun 5509 fnbrfvb 5604 fvelimab 5620 fvun1 5630 elpreima 5684 respreima 5693 fconst3m 5784 fnfvima 5800 fnunirn 5817 f1eqcocnv 5841 fnexALT 6177 tfrlem4 6380 tfrlem5 6381 fndmeng 6878 caseinl 7166 caseinr 7167 cc2lem 7349 shftfn 11006 phimullem 12418 qnnen 12673 prdsex 12971 prdsval 12975 prdsbaslemss 12976 imasaddvallemg 13017 lidlmex 14107 |
| Copyright terms: Public domain | W3C validator |