| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnfun | GIF version | ||
| Description: A function with domain is a function. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| fnfun | ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fn 5280 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 dom cdm 4680 Fun wfun 5271 Fn wfn 5272 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-fn 5280 |
| This theorem is referenced by: fnrel 5378 funfni 5382 fnco 5390 fnssresb 5394 ffun 5435 f1fun 5493 f1ofun 5533 fnbrfvb 5629 fvelimab 5645 fvun1 5655 elpreima 5709 respreima 5718 fconst3m 5813 fnfvima 5829 fnunirn 5846 f1eqcocnv 5870 fnexALT 6206 tfrlem4 6409 tfrlem5 6410 fndmeng 6913 caseinl 7205 caseinr 7206 cc2lem 7391 shftfn 11185 phimullem 12597 qnnen 12852 prdsex 13151 prdsval 13155 prdsbaslemss 13156 imasaddvallemg 13197 lidlmex 14287 edgstruct 15710 |
| Copyright terms: Public domain | W3C validator |