![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fnfun | GIF version |
Description: A function with domain is a function. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
fnfun | ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fn 5231 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
2 | 1 | simplbi 274 | 1 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1363 dom cdm 4638 Fun wfun 5222 Fn wfn 5223 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 df-fn 5231 |
This theorem is referenced by: fnrel 5326 funfni 5328 fnco 5336 fnssresb 5340 ffun 5380 f1fun 5436 f1ofun 5475 fnbrfvb 5569 fvelimab 5585 fvun1 5595 elpreima 5648 respreima 5657 fconst3m 5748 fnfvima 5764 fnunirn 5781 f1eqcocnv 5805 fnexALT 6126 tfrlem4 6328 tfrlem5 6329 fndmeng 6824 caseinl 7104 caseinr 7105 cc2lem 7279 shftfn 10847 phimullem 12239 qnnen 12446 prdsex 12736 imasaddvallemg 12754 lidlmex 13664 |
Copyright terms: Public domain | W3C validator |