| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnfun | GIF version | ||
| Description: A function with domain is a function. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| fnfun | ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fn 5321 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 dom cdm 4719 Fun wfun 5312 Fn wfn 5313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-fn 5321 |
| This theorem is referenced by: fnrel 5419 funfni 5423 fnco 5431 fnssresb 5435 ffun 5476 f1fun 5536 f1ofun 5576 fnbrfvb 5674 fvelimab 5692 fvun1 5702 elpreima 5756 respreima 5765 fncofn 5821 fconst3m 5862 fnfvima 5878 fnunirn 5897 f1eqcocnv 5921 fnexALT 6262 tfrlem4 6465 tfrlem5 6466 fndmeng 6971 caseinl 7266 caseinr 7267 cc2lem 7460 shftfn 11343 phimullem 12755 qnnen 13010 prdsex 13310 prdsval 13314 prdsbaslemss 13315 imasaddvallemg 13356 lidlmex 14447 edgstruct 15872 upgredg 15950 |
| Copyright terms: Public domain | W3C validator |