Step | Hyp | Ref
| Expression |
1 | | f1f 5393 |
. . 3
⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) |
2 | | fo2ndf 6195 |
. . 3
⊢ (𝐹:𝐴⟶𝐵 → (2nd ↾ 𝐹):𝐹–onto→ran 𝐹) |
3 | 1, 2 | syl 14 |
. 2
⊢ (𝐹:𝐴–1-1→𝐵 → (2nd ↾ 𝐹):𝐹–onto→ran 𝐹) |
4 | | f2ndf 6194 |
. . . . 5
⊢ (𝐹:𝐴⟶𝐵 → (2nd ↾ 𝐹):𝐹⟶𝐵) |
5 | 1, 4 | syl 14 |
. . . 4
⊢ (𝐹:𝐴–1-1→𝐵 → (2nd ↾ 𝐹):𝐹⟶𝐵) |
6 | | fssxp 5355 |
. . . . . . 7
⊢ (𝐹:𝐴⟶𝐵 → 𝐹 ⊆ (𝐴 × 𝐵)) |
7 | 1, 6 | syl 14 |
. . . . . 6
⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 ⊆ (𝐴 × 𝐵)) |
8 | | ssel2 3137 |
. . . . . . . . . . 11
⊢ ((𝐹 ⊆ (𝐴 × 𝐵) ∧ 𝑥 ∈ 𝐹) → 𝑥 ∈ (𝐴 × 𝐵)) |
9 | | elxp2 4622 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (𝐴 × 𝐵) ↔ ∃𝑎 ∈ 𝐴 ∃𝑣 ∈ 𝐵 𝑥 = 〈𝑎, 𝑣〉) |
10 | 8, 9 | sylib 121 |
. . . . . . . . . 10
⊢ ((𝐹 ⊆ (𝐴 × 𝐵) ∧ 𝑥 ∈ 𝐹) → ∃𝑎 ∈ 𝐴 ∃𝑣 ∈ 𝐵 𝑥 = 〈𝑎, 𝑣〉) |
11 | | ssel2 3137 |
. . . . . . . . . . 11
⊢ ((𝐹 ⊆ (𝐴 × 𝐵) ∧ 𝑦 ∈ 𝐹) → 𝑦 ∈ (𝐴 × 𝐵)) |
12 | | elxp2 4622 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (𝐴 × 𝐵) ↔ ∃𝑏 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑦 = 〈𝑏, 𝑤〉) |
13 | 11, 12 | sylib 121 |
. . . . . . . . . 10
⊢ ((𝐹 ⊆ (𝐴 × 𝐵) ∧ 𝑦 ∈ 𝐹) → ∃𝑏 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑦 = 〈𝑏, 𝑤〉) |
14 | 10, 13 | anim12dan 590 |
. . . . . . . . 9
⊢ ((𝐹 ⊆ (𝐴 × 𝐵) ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹)) → (∃𝑎 ∈ 𝐴 ∃𝑣 ∈ 𝐵 𝑥 = 〈𝑎, 𝑣〉 ∧ ∃𝑏 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑦 = 〈𝑏, 𝑤〉)) |
15 | | fvres 5510 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(〈𝑎, 𝑣〉 ∈ 𝐹 → ((2nd ↾ 𝐹)‘〈𝑎, 𝑣〉) = (2nd ‘〈𝑎, 𝑣〉)) |
16 | 15 | adantr 274 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((〈𝑎, 𝑣〉 ∈ 𝐹 ∧ 〈𝑏, 𝑤〉 ∈ 𝐹) → ((2nd ↾ 𝐹)‘〈𝑎, 𝑣〉) = (2nd ‘〈𝑎, 𝑣〉)) |
17 | 16 | adantr 274 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((〈𝑎, 𝑣〉 ∈ 𝐹 ∧ 〈𝑏, 𝑤〉 ∈ 𝐹) ∧ ((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵))) → ((2nd ↾ 𝐹)‘〈𝑎, 𝑣〉) = (2nd ‘〈𝑎, 𝑣〉)) |
18 | | fvres 5510 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(〈𝑏, 𝑤〉 ∈ 𝐹 → ((2nd ↾ 𝐹)‘〈𝑏, 𝑤〉) = (2nd ‘〈𝑏, 𝑤〉)) |
19 | 18 | ad2antlr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((〈𝑎, 𝑣〉 ∈ 𝐹 ∧ 〈𝑏, 𝑤〉 ∈ 𝐹) ∧ ((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵))) → ((2nd ↾ 𝐹)‘〈𝑏, 𝑤〉) = (2nd ‘〈𝑏, 𝑤〉)) |
20 | 17, 19 | eqeq12d 2180 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((〈𝑎, 𝑣〉 ∈ 𝐹 ∧ 〈𝑏, 𝑤〉 ∈ 𝐹) ∧ ((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵))) → (((2nd ↾ 𝐹)‘〈𝑎, 𝑣〉) = ((2nd ↾ 𝐹)‘〈𝑏, 𝑤〉) ↔ (2nd
‘〈𝑎, 𝑣〉) = (2nd
‘〈𝑏, 𝑤〉))) |
21 | | vex 2729 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 𝑎 ∈ V |
22 | | vex 2729 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 𝑣 ∈ V |
23 | 21, 22 | op2nd 6115 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(2nd ‘〈𝑎, 𝑣〉) = 𝑣 |
24 | | vex 2729 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 𝑏 ∈ V |
25 | | vex 2729 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 𝑤 ∈ V |
26 | 24, 25 | op2nd 6115 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(2nd ‘〈𝑏, 𝑤〉) = 𝑤 |
27 | 23, 26 | eqeq12i 2179 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((2nd ‘〈𝑎, 𝑣〉) = (2nd ‘〈𝑏, 𝑤〉) ↔ 𝑣 = 𝑤) |
28 | | f1fun 5396 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝐹:𝐴–1-1→𝐵 → Fun 𝐹) |
29 | | funopfv 5526 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (Fun
𝐹 → (〈𝑎, 𝑣〉 ∈ 𝐹 → (𝐹‘𝑎) = 𝑣)) |
30 | | funopfv 5526 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (Fun
𝐹 → (〈𝑏, 𝑤〉 ∈ 𝐹 → (𝐹‘𝑏) = 𝑤)) |
31 | 29, 30 | anim12d 333 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (Fun
𝐹 → ((〈𝑎, 𝑣〉 ∈ 𝐹 ∧ 〈𝑏, 𝑤〉 ∈ 𝐹) → ((𝐹‘𝑎) = 𝑣 ∧ (𝐹‘𝑏) = 𝑤))) |
32 | 28, 31 | syl 14 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝐹:𝐴–1-1→𝐵 → ((〈𝑎, 𝑣〉 ∈ 𝐹 ∧ 〈𝑏, 𝑤〉 ∈ 𝐹) → ((𝐹‘𝑎) = 𝑣 ∧ (𝐹‘𝑏) = 𝑤))) |
33 | | eqcom 2167 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝐹‘𝑎) = 𝑣 ↔ 𝑣 = (𝐹‘𝑎)) |
34 | 33 | biimpi 119 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝐹‘𝑎) = 𝑣 → 𝑣 = (𝐹‘𝑎)) |
35 | | eqcom 2167 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝐹‘𝑏) = 𝑤 ↔ 𝑤 = (𝐹‘𝑏)) |
36 | 35 | biimpi 119 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝐹‘𝑏) = 𝑤 → 𝑤 = (𝐹‘𝑏)) |
37 | 34, 36 | eqeqan12d 2181 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝐹‘𝑎) = 𝑣 ∧ (𝐹‘𝑏) = 𝑤) → (𝑣 = 𝑤 ↔ (𝐹‘𝑎) = (𝐹‘𝑏))) |
38 | | simpl 108 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) → 𝑎 ∈ 𝐴) |
39 | | simpl 108 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵) → 𝑏 ∈ 𝐴) |
40 | 38, 39 | anim12i 336 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) → (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) |
41 | | f1veqaeq 5737 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → ((𝐹‘𝑎) = (𝐹‘𝑏) → 𝑎 = 𝑏)) |
42 | 40, 41 | sylan2 284 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ ((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵))) → ((𝐹‘𝑎) = (𝐹‘𝑏) → 𝑎 = 𝑏)) |
43 | | opeq12 3760 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((𝑎 = 𝑏 ∧ 𝑣 = 𝑤) → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉) |
44 | 43 | ex 114 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑎 = 𝑏 → (𝑣 = 𝑤 → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉)) |
45 | 42, 44 | syl6 33 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ ((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵))) → ((𝐹‘𝑎) = (𝐹‘𝑏) → (𝑣 = 𝑤 → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉))) |
46 | 45 | com23 78 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ ((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵))) → (𝑣 = 𝑤 → ((𝐹‘𝑎) = (𝐹‘𝑏) → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉))) |
47 | 46 | ex 114 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝐹:𝐴–1-1→𝐵 → (((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) → (𝑣 = 𝑤 → ((𝐹‘𝑎) = (𝐹‘𝑏) → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉)))) |
48 | 47 | com14 88 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝐹‘𝑎) = (𝐹‘𝑏) → (((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) → (𝑣 = 𝑤 → (𝐹:𝐴–1-1→𝐵 → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉)))) |
49 | 37, 48 | syl6bi 162 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝐹‘𝑎) = 𝑣 ∧ (𝐹‘𝑏) = 𝑤) → (𝑣 = 𝑤 → (((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) → (𝑣 = 𝑤 → (𝐹:𝐴–1-1→𝐵 → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉))))) |
50 | 49 | com14 88 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑣 = 𝑤 → (𝑣 = 𝑤 → (((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) → (((𝐹‘𝑎) = 𝑣 ∧ (𝐹‘𝑏) = 𝑤) → (𝐹:𝐴–1-1→𝐵 → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉))))) |
51 | 50 | pm2.43i 49 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑣 = 𝑤 → (((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) → (((𝐹‘𝑎) = 𝑣 ∧ (𝐹‘𝑏) = 𝑤) → (𝐹:𝐴–1-1→𝐵 → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉)))) |
52 | 51 | com14 88 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝐹:𝐴–1-1→𝐵 → (((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) → (((𝐹‘𝑎) = 𝑣 ∧ (𝐹‘𝑏) = 𝑤) → (𝑣 = 𝑤 → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉)))) |
53 | 52 | com23 78 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝐹:𝐴–1-1→𝐵 → (((𝐹‘𝑎) = 𝑣 ∧ (𝐹‘𝑏) = 𝑤) → (((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) → (𝑣 = 𝑤 → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉)))) |
54 | 32, 53 | syld 45 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝐹:𝐴–1-1→𝐵 → ((〈𝑎, 𝑣〉 ∈ 𝐹 ∧ 〈𝑏, 𝑤〉 ∈ 𝐹) → (((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) → (𝑣 = 𝑤 → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉)))) |
55 | 54 | com13 80 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) → ((〈𝑎, 𝑣〉 ∈ 𝐹 ∧ 〈𝑏, 𝑤〉 ∈ 𝐹) → (𝐹:𝐴–1-1→𝐵 → (𝑣 = 𝑤 → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉)))) |
56 | 55 | impcom 124 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((〈𝑎, 𝑣〉 ∈ 𝐹 ∧ 〈𝑏, 𝑤〉 ∈ 𝐹) ∧ ((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵))) → (𝐹:𝐴–1-1→𝐵 → (𝑣 = 𝑤 → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉))) |
57 | 56 | com23 78 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((〈𝑎, 𝑣〉 ∈ 𝐹 ∧ 〈𝑏, 𝑤〉 ∈ 𝐹) ∧ ((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵))) → (𝑣 = 𝑤 → (𝐹:𝐴–1-1→𝐵 → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉))) |
58 | 27, 57 | syl5bi 151 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((〈𝑎, 𝑣〉 ∈ 𝐹 ∧ 〈𝑏, 𝑤〉 ∈ 𝐹) ∧ ((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵))) → ((2nd
‘〈𝑎, 𝑣〉) = (2nd
‘〈𝑏, 𝑤〉) → (𝐹:𝐴–1-1→𝐵 → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉))) |
59 | 20, 58 | sylbid 149 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((〈𝑎, 𝑣〉 ∈ 𝐹 ∧ 〈𝑏, 𝑤〉 ∈ 𝐹) ∧ ((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵))) → (((2nd ↾ 𝐹)‘〈𝑎, 𝑣〉) = ((2nd ↾ 𝐹)‘〈𝑏, 𝑤〉) → (𝐹:𝐴–1-1→𝐵 → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉))) |
60 | 59 | com23 78 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((〈𝑎, 𝑣〉 ∈ 𝐹 ∧ 〈𝑏, 𝑤〉 ∈ 𝐹) ∧ ((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵))) → (𝐹:𝐴–1-1→𝐵 → (((2nd ↾ 𝐹)‘〈𝑎, 𝑣〉) = ((2nd ↾ 𝐹)‘〈𝑏, 𝑤〉) → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉))) |
61 | 60 | ex 114 |
. . . . . . . . . . . . . . . . . . 19
⊢
((〈𝑎, 𝑣〉 ∈ 𝐹 ∧ 〈𝑏, 𝑤〉 ∈ 𝐹) → (((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) → (𝐹:𝐴–1-1→𝐵 → (((2nd ↾ 𝐹)‘〈𝑎, 𝑣〉) = ((2nd ↾ 𝐹)‘〈𝑏, 𝑤〉) → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉)))) |
62 | 61 | adantl 275 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹 ⊆ (𝐴 × 𝐵) ∧ (〈𝑎, 𝑣〉 ∈ 𝐹 ∧ 〈𝑏, 𝑤〉 ∈ 𝐹)) → (((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) → (𝐹:𝐴–1-1→𝐵 → (((2nd ↾ 𝐹)‘〈𝑎, 𝑣〉) = ((2nd ↾ 𝐹)‘〈𝑏, 𝑤〉) → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉)))) |
63 | 62 | com12 30 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) → ((𝐹 ⊆ (𝐴 × 𝐵) ∧ (〈𝑎, 𝑣〉 ∈ 𝐹 ∧ 〈𝑏, 𝑤〉 ∈ 𝐹)) → (𝐹:𝐴–1-1→𝐵 → (((2nd ↾ 𝐹)‘〈𝑎, 𝑣〉) = ((2nd ↾ 𝐹)‘〈𝑏, 𝑤〉) → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉)))) |
64 | 63 | adantlr 469 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ 𝑥 = 〈𝑎, 𝑣〉) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) → ((𝐹 ⊆ (𝐴 × 𝐵) ∧ (〈𝑎, 𝑣〉 ∈ 𝐹 ∧ 〈𝑏, 𝑤〉 ∈ 𝐹)) → (𝐹:𝐴–1-1→𝐵 → (((2nd ↾ 𝐹)‘〈𝑎, 𝑣〉) = ((2nd ↾ 𝐹)‘〈𝑏, 𝑤〉) → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉)))) |
65 | 64 | adantr 274 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ 𝑥 = 〈𝑎, 𝑣〉) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑦 = 〈𝑏, 𝑤〉) → ((𝐹 ⊆ (𝐴 × 𝐵) ∧ (〈𝑎, 𝑣〉 ∈ 𝐹 ∧ 〈𝑏, 𝑤〉 ∈ 𝐹)) → (𝐹:𝐴–1-1→𝐵 → (((2nd ↾ 𝐹)‘〈𝑎, 𝑣〉) = ((2nd ↾ 𝐹)‘〈𝑏, 𝑤〉) → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉)))) |
66 | | eleq1 2229 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 〈𝑎, 𝑣〉 → (𝑥 ∈ 𝐹 ↔ 〈𝑎, 𝑣〉 ∈ 𝐹)) |
67 | 66 | ad2antlr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ 𝑥 = 〈𝑎, 𝑣〉) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) → (𝑥 ∈ 𝐹 ↔ 〈𝑎, 𝑣〉 ∈ 𝐹)) |
68 | | eleq1 2229 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 〈𝑏, 𝑤〉 → (𝑦 ∈ 𝐹 ↔ 〈𝑏, 𝑤〉 ∈ 𝐹)) |
69 | 67, 68 | bi2anan9 596 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ 𝑥 = 〈𝑎, 𝑣〉) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑦 = 〈𝑏, 𝑤〉) → ((𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹) ↔ (〈𝑎, 𝑣〉 ∈ 𝐹 ∧ 〈𝑏, 𝑤〉 ∈ 𝐹))) |
70 | 69 | anbi2d 460 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ 𝑥 = 〈𝑎, 𝑣〉) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑦 = 〈𝑏, 𝑤〉) → ((𝐹 ⊆ (𝐴 × 𝐵) ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹)) ↔ (𝐹 ⊆ (𝐴 × 𝐵) ∧ (〈𝑎, 𝑣〉 ∈ 𝐹 ∧ 〈𝑏, 𝑤〉 ∈ 𝐹)))) |
71 | | fveq2 5486 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 〈𝑎, 𝑣〉 → ((2nd ↾ 𝐹)‘𝑥) = ((2nd ↾ 𝐹)‘〈𝑎, 𝑣〉)) |
72 | 71 | ad2antlr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ 𝑥 = 〈𝑎, 𝑣〉) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) → ((2nd ↾ 𝐹)‘𝑥) = ((2nd ↾ 𝐹)‘〈𝑎, 𝑣〉)) |
73 | | fveq2 5486 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 〈𝑏, 𝑤〉 → ((2nd ↾ 𝐹)‘𝑦) = ((2nd ↾ 𝐹)‘〈𝑏, 𝑤〉)) |
74 | 72, 73 | eqeqan12d 2181 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ 𝑥 = 〈𝑎, 𝑣〉) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑦 = 〈𝑏, 𝑤〉) → (((2nd ↾
𝐹)‘𝑥) = ((2nd ↾ 𝐹)‘𝑦) ↔ ((2nd ↾ 𝐹)‘〈𝑎, 𝑣〉) = ((2nd ↾ 𝐹)‘〈𝑏, 𝑤〉))) |
75 | | simpllr 524 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ 𝑥 = 〈𝑎, 𝑣〉) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑦 = 〈𝑏, 𝑤〉) → 𝑥 = 〈𝑎, 𝑣〉) |
76 | | simpr 109 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ 𝑥 = 〈𝑎, 𝑣〉) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑦 = 〈𝑏, 𝑤〉) → 𝑦 = 〈𝑏, 𝑤〉) |
77 | 75, 76 | eqeq12d 2180 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ 𝑥 = 〈𝑎, 𝑣〉) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑦 = 〈𝑏, 𝑤〉) → (𝑥 = 𝑦 ↔ 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉)) |
78 | 74, 77 | imbi12d 233 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ 𝑥 = 〈𝑎, 𝑣〉) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑦 = 〈𝑏, 𝑤〉) → ((((2nd ↾
𝐹)‘𝑥) = ((2nd ↾ 𝐹)‘𝑦) → 𝑥 = 𝑦) ↔ (((2nd ↾ 𝐹)‘〈𝑎, 𝑣〉) = ((2nd ↾ 𝐹)‘〈𝑏, 𝑤〉) → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉))) |
79 | 78 | imbi2d 229 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ 𝑥 = 〈𝑎, 𝑣〉) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑦 = 〈𝑏, 𝑤〉) → ((𝐹:𝐴–1-1→𝐵 → (((2nd ↾ 𝐹)‘𝑥) = ((2nd ↾ 𝐹)‘𝑦) → 𝑥 = 𝑦)) ↔ (𝐹:𝐴–1-1→𝐵 → (((2nd ↾ 𝐹)‘〈𝑎, 𝑣〉) = ((2nd ↾ 𝐹)‘〈𝑏, 𝑤〉) → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉)))) |
80 | 65, 70, 79 | 3imtr4d 202 |
. . . . . . . . . . . . . 14
⊢
(((((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ 𝑥 = 〈𝑎, 𝑣〉) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑦 = 〈𝑏, 𝑤〉) → ((𝐹 ⊆ (𝐴 × 𝐵) ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹)) → (𝐹:𝐴–1-1→𝐵 → (((2nd ↾ 𝐹)‘𝑥) = ((2nd ↾ 𝐹)‘𝑦) → 𝑥 = 𝑦)))) |
81 | 80 | ex 114 |
. . . . . . . . . . . . 13
⊢ ((((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ 𝑥 = 〈𝑎, 𝑣〉) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) → (𝑦 = 〈𝑏, 𝑤〉 → ((𝐹 ⊆ (𝐴 × 𝐵) ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹)) → (𝐹:𝐴–1-1→𝐵 → (((2nd ↾ 𝐹)‘𝑥) = ((2nd ↾ 𝐹)‘𝑦) → 𝑥 = 𝑦))))) |
82 | 81 | rexlimdvva 2591 |
. . . . . . . . . . . 12
⊢ (((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ 𝑥 = 〈𝑎, 𝑣〉) → (∃𝑏 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑦 = 〈𝑏, 𝑤〉 → ((𝐹 ⊆ (𝐴 × 𝐵) ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹)) → (𝐹:𝐴–1-1→𝐵 → (((2nd ↾ 𝐹)‘𝑥) = ((2nd ↾ 𝐹)‘𝑦) → 𝑥 = 𝑦))))) |
83 | 82 | ex 114 |
. . . . . . . . . . 11
⊢ ((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) → (𝑥 = 〈𝑎, 𝑣〉 → (∃𝑏 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑦 = 〈𝑏, 𝑤〉 → ((𝐹 ⊆ (𝐴 × 𝐵) ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹)) → (𝐹:𝐴–1-1→𝐵 → (((2nd ↾ 𝐹)‘𝑥) = ((2nd ↾ 𝐹)‘𝑦) → 𝑥 = 𝑦)))))) |
84 | 83 | rexlimivv 2589 |
. . . . . . . . . 10
⊢
(∃𝑎 ∈
𝐴 ∃𝑣 ∈ 𝐵 𝑥 = 〈𝑎, 𝑣〉 → (∃𝑏 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑦 = 〈𝑏, 𝑤〉 → ((𝐹 ⊆ (𝐴 × 𝐵) ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹)) → (𝐹:𝐴–1-1→𝐵 → (((2nd ↾ 𝐹)‘𝑥) = ((2nd ↾ 𝐹)‘𝑦) → 𝑥 = 𝑦))))) |
85 | 84 | imp 123 |
. . . . . . . . 9
⊢
((∃𝑎 ∈
𝐴 ∃𝑣 ∈ 𝐵 𝑥 = 〈𝑎, 𝑣〉 ∧ ∃𝑏 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑦 = 〈𝑏, 𝑤〉) → ((𝐹 ⊆ (𝐴 × 𝐵) ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹)) → (𝐹:𝐴–1-1→𝐵 → (((2nd ↾ 𝐹)‘𝑥) = ((2nd ↾ 𝐹)‘𝑦) → 𝑥 = 𝑦)))) |
86 | 14, 85 | mpcom 36 |
. . . . . . . 8
⊢ ((𝐹 ⊆ (𝐴 × 𝐵) ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹)) → (𝐹:𝐴–1-1→𝐵 → (((2nd ↾ 𝐹)‘𝑥) = ((2nd ↾ 𝐹)‘𝑦) → 𝑥 = 𝑦))) |
87 | 86 | ex 114 |
. . . . . . 7
⊢ (𝐹 ⊆ (𝐴 × 𝐵) → ((𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹) → (𝐹:𝐴–1-1→𝐵 → (((2nd ↾ 𝐹)‘𝑥) = ((2nd ↾ 𝐹)‘𝑦) → 𝑥 = 𝑦)))) |
88 | 87 | com23 78 |
. . . . . 6
⊢ (𝐹 ⊆ (𝐴 × 𝐵) → (𝐹:𝐴–1-1→𝐵 → ((𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹) → (((2nd ↾ 𝐹)‘𝑥) = ((2nd ↾ 𝐹)‘𝑦) → 𝑥 = 𝑦)))) |
89 | 7, 88 | mpcom 36 |
. . . . 5
⊢ (𝐹:𝐴–1-1→𝐵 → ((𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹) → (((2nd ↾ 𝐹)‘𝑥) = ((2nd ↾ 𝐹)‘𝑦) → 𝑥 = 𝑦))) |
90 | 89 | ralrimivv 2547 |
. . . 4
⊢ (𝐹:𝐴–1-1→𝐵 → ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (((2nd ↾ 𝐹)‘𝑥) = ((2nd ↾ 𝐹)‘𝑦) → 𝑥 = 𝑦)) |
91 | | dff13 5736 |
. . . 4
⊢
((2nd ↾ 𝐹):𝐹–1-1→𝐵 ↔ ((2nd ↾ 𝐹):𝐹⟶𝐵 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (((2nd ↾ 𝐹)‘𝑥) = ((2nd ↾ 𝐹)‘𝑦) → 𝑥 = 𝑦))) |
92 | 5, 90, 91 | sylanbrc 414 |
. . 3
⊢ (𝐹:𝐴–1-1→𝐵 → (2nd ↾ 𝐹):𝐹–1-1→𝐵) |
93 | | df-f1 5193 |
. . . 4
⊢
((2nd ↾ 𝐹):𝐹–1-1→𝐵 ↔ ((2nd ↾ 𝐹):𝐹⟶𝐵 ∧ Fun ◡(2nd ↾ 𝐹))) |
94 | 93 | simprbi 273 |
. . 3
⊢
((2nd ↾ 𝐹):𝐹–1-1→𝐵 → Fun ◡(2nd ↾ 𝐹)) |
95 | 92, 94 | syl 14 |
. 2
⊢ (𝐹:𝐴–1-1→𝐵 → Fun ◡(2nd ↾ 𝐹)) |
96 | | dff1o3 5438 |
. 2
⊢
((2nd ↾ 𝐹):𝐹–1-1-onto→ran
𝐹 ↔ ((2nd
↾ 𝐹):𝐹–onto→ran 𝐹 ∧ Fun ◡(2nd ↾ 𝐹))) |
97 | 3, 95, 96 | sylanbrc 414 |
1
⊢ (𝐹:𝐴–1-1→𝐵 → (2nd ↾ 𝐹):𝐹–1-1-onto→ran
𝐹) |