ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1dmvrnfibi GIF version

Theorem f1dmvrnfibi 7003
Description: A one-to-one function whose domain is a set is finite if and only if its range is finite. See also f1vrnfibi 7004. (Contributed by AV, 10-Jan-2020.)
Assertion
Ref Expression
f1dmvrnfibi ((𝐴𝑉𝐹:𝐴1-1𝐵) → (𝐹 ∈ Fin ↔ ran 𝐹 ∈ Fin))

Proof of Theorem f1dmvrnfibi
StepHypRef Expression
1 f1rel 5463 . . . 4 (𝐹:𝐴1-1𝐵 → Rel 𝐹)
21ad2antlr 489 . . 3 (((𝐴𝑉𝐹:𝐴1-1𝐵) ∧ 𝐹 ∈ Fin) → Rel 𝐹)
3 f1cnv 5524 . . . . 5 (𝐹:𝐴1-1𝐵𝐹:ran 𝐹1-1-onto𝐴)
4 f1ofun 5502 . . . . 5 (𝐹:ran 𝐹1-1-onto𝐴 → Fun 𝐹)
53, 4syl 14 . . . 4 (𝐹:𝐴1-1𝐵 → Fun 𝐹)
65ad2antlr 489 . . 3 (((𝐴𝑉𝐹:𝐴1-1𝐵) ∧ 𝐹 ∈ Fin) → Fun 𝐹)
7 simpr 110 . . 3 (((𝐴𝑉𝐹:𝐴1-1𝐵) ∧ 𝐹 ∈ Fin) → 𝐹 ∈ Fin)
8 funrnfi 7001 . . 3 ((Rel 𝐹 ∧ Fun 𝐹𝐹 ∈ Fin) → ran 𝐹 ∈ Fin)
92, 6, 7, 8syl3anc 1249 . 2 (((𝐴𝑉𝐹:𝐴1-1𝐵) ∧ 𝐹 ∈ Fin) → ran 𝐹 ∈ Fin)
10 simpr 110 . . . 4 (((𝐴𝑉𝐹:𝐴1-1𝐵) ∧ ran 𝐹 ∈ Fin) → ran 𝐹 ∈ Fin)
11 f1dm 5464 . . . . . . . 8 (𝐹:𝐴1-1𝐵 → dom 𝐹 = 𝐴)
12 f1f1orn 5511 . . . . . . . 8 (𝐹:𝐴1-1𝐵𝐹:𝐴1-1-onto→ran 𝐹)
13 eleq1 2256 . . . . . . . . . . . 12 (𝐴 = dom 𝐹 → (𝐴𝑉 ↔ dom 𝐹𝑉))
14 f1oeq2 5489 . . . . . . . . . . . 12 (𝐴 = dom 𝐹 → (𝐹:𝐴1-1-onto→ran 𝐹𝐹:dom 𝐹1-1-onto→ran 𝐹))
1513, 14anbi12d 473 . . . . . . . . . . 11 (𝐴 = dom 𝐹 → ((𝐴𝑉𝐹:𝐴1-1-onto→ran 𝐹) ↔ (dom 𝐹𝑉𝐹:dom 𝐹1-1-onto→ran 𝐹)))
1615eqcoms 2196 . . . . . . . . . 10 (dom 𝐹 = 𝐴 → ((𝐴𝑉𝐹:𝐴1-1-onto→ran 𝐹) ↔ (dom 𝐹𝑉𝐹:dom 𝐹1-1-onto→ran 𝐹)))
1716biimpd 144 . . . . . . . . 9 (dom 𝐹 = 𝐴 → ((𝐴𝑉𝐹:𝐴1-1-onto→ran 𝐹) → (dom 𝐹𝑉𝐹:dom 𝐹1-1-onto→ran 𝐹)))
1817expcomd 1452 . . . . . . . 8 (dom 𝐹 = 𝐴 → (𝐹:𝐴1-1-onto→ran 𝐹 → (𝐴𝑉 → (dom 𝐹𝑉𝐹:dom 𝐹1-1-onto→ran 𝐹))))
1911, 12, 18sylc 62 . . . . . . 7 (𝐹:𝐴1-1𝐵 → (𝐴𝑉 → (dom 𝐹𝑉𝐹:dom 𝐹1-1-onto→ran 𝐹)))
2019impcom 125 . . . . . 6 ((𝐴𝑉𝐹:𝐴1-1𝐵) → (dom 𝐹𝑉𝐹:dom 𝐹1-1-onto→ran 𝐹))
2120adantr 276 . . . . 5 (((𝐴𝑉𝐹:𝐴1-1𝐵) ∧ ran 𝐹 ∈ Fin) → (dom 𝐹𝑉𝐹:dom 𝐹1-1-onto→ran 𝐹))
22 f1oeng 6811 . . . . 5 ((dom 𝐹𝑉𝐹:dom 𝐹1-1-onto→ran 𝐹) → dom 𝐹 ≈ ran 𝐹)
2321, 22syl 14 . . . 4 (((𝐴𝑉𝐹:𝐴1-1𝐵) ∧ ran 𝐹 ∈ Fin) → dom 𝐹 ≈ ran 𝐹)
24 enfii 6930 . . . 4 ((ran 𝐹 ∈ Fin ∧ dom 𝐹 ≈ ran 𝐹) → dom 𝐹 ∈ Fin)
2510, 23, 24syl2anc 411 . . 3 (((𝐴𝑉𝐹:𝐴1-1𝐵) ∧ ran 𝐹 ∈ Fin) → dom 𝐹 ∈ Fin)
26 f1fun 5462 . . . . 5 (𝐹:𝐴1-1𝐵 → Fun 𝐹)
2726ad2antlr 489 . . . 4 (((𝐴𝑉𝐹:𝐴1-1𝐵) ∧ ran 𝐹 ∈ Fin) → Fun 𝐹)
28 fundmfibi 6997 . . . 4 (Fun 𝐹 → (𝐹 ∈ Fin ↔ dom 𝐹 ∈ Fin))
2927, 28syl 14 . . 3 (((𝐴𝑉𝐹:𝐴1-1𝐵) ∧ ran 𝐹 ∈ Fin) → (𝐹 ∈ Fin ↔ dom 𝐹 ∈ Fin))
3025, 29mpbird 167 . 2 (((𝐴𝑉𝐹:𝐴1-1𝐵) ∧ ran 𝐹 ∈ Fin) → 𝐹 ∈ Fin)
319, 30impbida 596 1 ((𝐴𝑉𝐹:𝐴1-1𝐵) → (𝐹 ∈ Fin ↔ ran 𝐹 ∈ Fin))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164   class class class wbr 4029  ccnv 4658  dom cdm 4659  ran crn 4660  Rel wrel 4664  Fun wfun 5248  1-1wf1 5251  1-1-ontowf1o 5253  cen 6792  Fincfn 6794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-1st 6193  df-2nd 6194  df-1o 6469  df-er 6587  df-en 6795  df-fin 6797
This theorem is referenced by:  f1vrnfibi  7004
  Copyright terms: Public domain W3C validator