ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1dmvrnfibi GIF version

Theorem f1dmvrnfibi 7072
Description: A one-to-one function whose domain is a set is finite if and only if its range is finite. See also f1vrnfibi 7073. (Contributed by AV, 10-Jan-2020.)
Assertion
Ref Expression
f1dmvrnfibi ((𝐴𝑉𝐹:𝐴1-1𝐵) → (𝐹 ∈ Fin ↔ ran 𝐹 ∈ Fin))

Proof of Theorem f1dmvrnfibi
StepHypRef Expression
1 f1rel 5507 . . . 4 (𝐹:𝐴1-1𝐵 → Rel 𝐹)
21ad2antlr 489 . . 3 (((𝐴𝑉𝐹:𝐴1-1𝐵) ∧ 𝐹 ∈ Fin) → Rel 𝐹)
3 f1cnv 5568 . . . . 5 (𝐹:𝐴1-1𝐵𝐹:ran 𝐹1-1-onto𝐴)
4 f1ofun 5546 . . . . 5 (𝐹:ran 𝐹1-1-onto𝐴 → Fun 𝐹)
53, 4syl 14 . . . 4 (𝐹:𝐴1-1𝐵 → Fun 𝐹)
65ad2antlr 489 . . 3 (((𝐴𝑉𝐹:𝐴1-1𝐵) ∧ 𝐹 ∈ Fin) → Fun 𝐹)
7 simpr 110 . . 3 (((𝐴𝑉𝐹:𝐴1-1𝐵) ∧ 𝐹 ∈ Fin) → 𝐹 ∈ Fin)
8 funrnfi 7070 . . 3 ((Rel 𝐹 ∧ Fun 𝐹𝐹 ∈ Fin) → ran 𝐹 ∈ Fin)
92, 6, 7, 8syl3anc 1250 . 2 (((𝐴𝑉𝐹:𝐴1-1𝐵) ∧ 𝐹 ∈ Fin) → ran 𝐹 ∈ Fin)
10 simpr 110 . . . 4 (((𝐴𝑉𝐹:𝐴1-1𝐵) ∧ ran 𝐹 ∈ Fin) → ran 𝐹 ∈ Fin)
11 f1dm 5508 . . . . . . . 8 (𝐹:𝐴1-1𝐵 → dom 𝐹 = 𝐴)
12 f1f1orn 5555 . . . . . . . 8 (𝐹:𝐴1-1𝐵𝐹:𝐴1-1-onto→ran 𝐹)
13 eleq1 2270 . . . . . . . . . . . 12 (𝐴 = dom 𝐹 → (𝐴𝑉 ↔ dom 𝐹𝑉))
14 f1oeq2 5533 . . . . . . . . . . . 12 (𝐴 = dom 𝐹 → (𝐹:𝐴1-1-onto→ran 𝐹𝐹:dom 𝐹1-1-onto→ran 𝐹))
1513, 14anbi12d 473 . . . . . . . . . . 11 (𝐴 = dom 𝐹 → ((𝐴𝑉𝐹:𝐴1-1-onto→ran 𝐹) ↔ (dom 𝐹𝑉𝐹:dom 𝐹1-1-onto→ran 𝐹)))
1615eqcoms 2210 . . . . . . . . . 10 (dom 𝐹 = 𝐴 → ((𝐴𝑉𝐹:𝐴1-1-onto→ran 𝐹) ↔ (dom 𝐹𝑉𝐹:dom 𝐹1-1-onto→ran 𝐹)))
1716biimpd 144 . . . . . . . . 9 (dom 𝐹 = 𝐴 → ((𝐴𝑉𝐹:𝐴1-1-onto→ran 𝐹) → (dom 𝐹𝑉𝐹:dom 𝐹1-1-onto→ran 𝐹)))
1817expcomd 1462 . . . . . . . 8 (dom 𝐹 = 𝐴 → (𝐹:𝐴1-1-onto→ran 𝐹 → (𝐴𝑉 → (dom 𝐹𝑉𝐹:dom 𝐹1-1-onto→ran 𝐹))))
1911, 12, 18sylc 62 . . . . . . 7 (𝐹:𝐴1-1𝐵 → (𝐴𝑉 → (dom 𝐹𝑉𝐹:dom 𝐹1-1-onto→ran 𝐹)))
2019impcom 125 . . . . . 6 ((𝐴𝑉𝐹:𝐴1-1𝐵) → (dom 𝐹𝑉𝐹:dom 𝐹1-1-onto→ran 𝐹))
2120adantr 276 . . . . 5 (((𝐴𝑉𝐹:𝐴1-1𝐵) ∧ ran 𝐹 ∈ Fin) → (dom 𝐹𝑉𝐹:dom 𝐹1-1-onto→ran 𝐹))
22 f1oeng 6871 . . . . 5 ((dom 𝐹𝑉𝐹:dom 𝐹1-1-onto→ran 𝐹) → dom 𝐹 ≈ ran 𝐹)
2321, 22syl 14 . . . 4 (((𝐴𝑉𝐹:𝐴1-1𝐵) ∧ ran 𝐹 ∈ Fin) → dom 𝐹 ≈ ran 𝐹)
24 enfii 6997 . . . 4 ((ran 𝐹 ∈ Fin ∧ dom 𝐹 ≈ ran 𝐹) → dom 𝐹 ∈ Fin)
2510, 23, 24syl2anc 411 . . 3 (((𝐴𝑉𝐹:𝐴1-1𝐵) ∧ ran 𝐹 ∈ Fin) → dom 𝐹 ∈ Fin)
26 f1fun 5506 . . . . 5 (𝐹:𝐴1-1𝐵 → Fun 𝐹)
2726ad2antlr 489 . . . 4 (((𝐴𝑉𝐹:𝐴1-1𝐵) ∧ ran 𝐹 ∈ Fin) → Fun 𝐹)
28 fundmfibi 7066 . . . 4 (Fun 𝐹 → (𝐹 ∈ Fin ↔ dom 𝐹 ∈ Fin))
2927, 28syl 14 . . 3 (((𝐴𝑉𝐹:𝐴1-1𝐵) ∧ ran 𝐹 ∈ Fin) → (𝐹 ∈ Fin ↔ dom 𝐹 ∈ Fin))
3025, 29mpbird 167 . 2 (((𝐴𝑉𝐹:𝐴1-1𝐵) ∧ ran 𝐹 ∈ Fin) → 𝐹 ∈ Fin)
319, 30impbida 596 1 ((𝐴𝑉𝐹:𝐴1-1𝐵) → (𝐹 ∈ Fin ↔ ran 𝐹 ∈ Fin))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2178   class class class wbr 4059  ccnv 4692  dom cdm 4693  ran crn 4694  Rel wrel 4698  Fun wfun 5284  1-1wf1 5287  1-1-ontowf1o 5289  cen 6848  Fincfn 6850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-1st 6249  df-2nd 6250  df-1o 6525  df-er 6643  df-en 6851  df-fin 6853
This theorem is referenced by:  f1vrnfibi  7073
  Copyright terms: Public domain W3C validator