Proof of Theorem f1dmvrnfibi
Step | Hyp | Ref
| Expression |
1 | | f1rel 5407 |
. . . 4
⊢ (𝐹:𝐴–1-1→𝐵 → Rel 𝐹) |
2 | 1 | ad2antlr 486 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) ∧ 𝐹 ∈ Fin) → Rel 𝐹) |
3 | | f1cnv 5466 |
. . . . 5
⊢ (𝐹:𝐴–1-1→𝐵 → ◡𝐹:ran 𝐹–1-1-onto→𝐴) |
4 | | f1ofun 5444 |
. . . . 5
⊢ (◡𝐹:ran 𝐹–1-1-onto→𝐴 → Fun ◡𝐹) |
5 | 3, 4 | syl 14 |
. . . 4
⊢ (𝐹:𝐴–1-1→𝐵 → Fun ◡𝐹) |
6 | 5 | ad2antlr 486 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) ∧ 𝐹 ∈ Fin) → Fun ◡𝐹) |
7 | | simpr 109 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) ∧ 𝐹 ∈ Fin) → 𝐹 ∈ Fin) |
8 | | funrnfi 6919 |
. . 3
⊢ ((Rel
𝐹 ∧ Fun ◡𝐹 ∧ 𝐹 ∈ Fin) → ran 𝐹 ∈ Fin) |
9 | 2, 6, 7, 8 | syl3anc 1233 |
. 2
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) ∧ 𝐹 ∈ Fin) → ran 𝐹 ∈ Fin) |
10 | | simpr 109 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) ∧ ran 𝐹 ∈ Fin) → ran 𝐹 ∈ Fin) |
11 | | f1dm 5408 |
. . . . . . . 8
⊢ (𝐹:𝐴–1-1→𝐵 → dom 𝐹 = 𝐴) |
12 | | f1f1orn 5453 |
. . . . . . . 8
⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴–1-1-onto→ran
𝐹) |
13 | | eleq1 2233 |
. . . . . . . . . . . 12
⊢ (𝐴 = dom 𝐹 → (𝐴 ∈ 𝑉 ↔ dom 𝐹 ∈ 𝑉)) |
14 | | f1oeq2 5432 |
. . . . . . . . . . . 12
⊢ (𝐴 = dom 𝐹 → (𝐹:𝐴–1-1-onto→ran
𝐹 ↔ 𝐹:dom 𝐹–1-1-onto→ran
𝐹)) |
15 | 13, 14 | anbi12d 470 |
. . . . . . . . . . 11
⊢ (𝐴 = dom 𝐹 → ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1-onto→ran
𝐹) ↔ (dom 𝐹 ∈ 𝑉 ∧ 𝐹:dom 𝐹–1-1-onto→ran
𝐹))) |
16 | 15 | eqcoms 2173 |
. . . . . . . . . 10
⊢ (dom
𝐹 = 𝐴 → ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1-onto→ran
𝐹) ↔ (dom 𝐹 ∈ 𝑉 ∧ 𝐹:dom 𝐹–1-1-onto→ran
𝐹))) |
17 | 16 | biimpd 143 |
. . . . . . . . 9
⊢ (dom
𝐹 = 𝐴 → ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1-onto→ran
𝐹) → (dom 𝐹 ∈ 𝑉 ∧ 𝐹:dom 𝐹–1-1-onto→ran
𝐹))) |
18 | 17 | expcomd 1434 |
. . . . . . . 8
⊢ (dom
𝐹 = 𝐴 → (𝐹:𝐴–1-1-onto→ran
𝐹 → (𝐴 ∈ 𝑉 → (dom 𝐹 ∈ 𝑉 ∧ 𝐹:dom 𝐹–1-1-onto→ran
𝐹)))) |
19 | 11, 12, 18 | sylc 62 |
. . . . . . 7
⊢ (𝐹:𝐴–1-1→𝐵 → (𝐴 ∈ 𝑉 → (dom 𝐹 ∈ 𝑉 ∧ 𝐹:dom 𝐹–1-1-onto→ran
𝐹))) |
20 | 19 | impcom 124 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → (dom 𝐹 ∈ 𝑉 ∧ 𝐹:dom 𝐹–1-1-onto→ran
𝐹)) |
21 | 20 | adantr 274 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) ∧ ran 𝐹 ∈ Fin) → (dom 𝐹 ∈ 𝑉 ∧ 𝐹:dom 𝐹–1-1-onto→ran
𝐹)) |
22 | | f1oeng 6735 |
. . . . 5
⊢ ((dom
𝐹 ∈ 𝑉 ∧ 𝐹:dom 𝐹–1-1-onto→ran
𝐹) → dom 𝐹 ≈ ran 𝐹) |
23 | 21, 22 | syl 14 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) ∧ ran 𝐹 ∈ Fin) → dom 𝐹 ≈ ran 𝐹) |
24 | | enfii 6852 |
. . . 4
⊢ ((ran
𝐹 ∈ Fin ∧ dom
𝐹 ≈ ran 𝐹) → dom 𝐹 ∈ Fin) |
25 | 10, 23, 24 | syl2anc 409 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) ∧ ran 𝐹 ∈ Fin) → dom 𝐹 ∈ Fin) |
26 | | f1fun 5406 |
. . . . 5
⊢ (𝐹:𝐴–1-1→𝐵 → Fun 𝐹) |
27 | 26 | ad2antlr 486 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) ∧ ran 𝐹 ∈ Fin) → Fun 𝐹) |
28 | | fundmfibi 6916 |
. . . 4
⊢ (Fun
𝐹 → (𝐹 ∈ Fin ↔ dom 𝐹 ∈ Fin)) |
29 | 27, 28 | syl 14 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) ∧ ran 𝐹 ∈ Fin) → (𝐹 ∈ Fin ↔ dom 𝐹 ∈ Fin)) |
30 | 25, 29 | mpbird 166 |
. 2
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) ∧ ran 𝐹 ∈ Fin) → 𝐹 ∈ Fin) |
31 | 9, 30 | impbida 591 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → (𝐹 ∈ Fin ↔ ran 𝐹 ∈ Fin)) |