| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anidm | GIF version | ||
| Description: Idempotent law for conjunction. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 14-Mar-2014.) |
| Ref | Expression |
|---|---|
| anidm | ⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.24 395 | . 2 ⊢ (𝜑 ↔ (𝜑 ∧ 𝜑)) | |
| 2 | 1 | bicomi 132 | 1 ⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: anidmdbi 398 anandi 590 anandir 591 truantru 1421 falanfal 1424 truxortru 1439 truxorfal 1440 falxortru 1441 falxorfal 1442 sbnf2 2009 2eu4 2147 inidm 3382 ralidm 3561 opcom 4295 opeqsn 4297 poirr 4354 rnxpid 5117 xp11m 5121 fununi 5342 brprcneu 5569 erinxp 6696 dom2lem 6863 dmaddpi 7438 dmmulpi 7439 enq0ref 7546 enq0tr 7547 expap0 10714 sqap0 10751 xrmaxiflemcom 11560 gcddvds 12284 isnsg2 13539 eqger 13560 xmeter 14908 |
| Copyright terms: Public domain | W3C validator |