ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  anidm GIF version

Theorem anidm 396
Description: Idempotent law for conjunction. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 14-Mar-2014.)
Assertion
Ref Expression
anidm ((𝜑𝜑) ↔ 𝜑)

Proof of Theorem anidm
StepHypRef Expression
1 pm4.24 395 . 2 (𝜑 ↔ (𝜑𝜑))
21bicomi 132 1 ((𝜑𝜑) ↔ 𝜑)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  anidmdbi  398  anandi  590  anandir  591  truantru  1421  falanfal  1424  truxortru  1439  truxorfal  1440  falxortru  1441  falxorfal  1442  sbnf2  2009  2eu4  2147  inidm  3382  ralidm  3561  opcom  4295  opeqsn  4297  poirr  4354  rnxpid  5117  xp11m  5121  fununi  5342  brprcneu  5569  erinxp  6696  dom2lem  6863  dmaddpi  7438  dmmulpi  7439  enq0ref  7546  enq0tr  7547  expap0  10714  sqap0  10751  xrmaxiflemcom  11560  gcddvds  12284  isnsg2  13539  eqger  13560  xmeter  14908
  Copyright terms: Public domain W3C validator