| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anidm | GIF version | ||
| Description: Idempotent law for conjunction. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 14-Mar-2014.) |
| Ref | Expression |
|---|---|
| anidm | ⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.24 395 | . 2 ⊢ (𝜑 ↔ (𝜑 ∧ 𝜑)) | |
| 2 | 1 | bicomi 132 | 1 ⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: anidmdbi 398 anandi 590 anandir 591 truantru 1412 falanfal 1415 truxortru 1430 truxorfal 1431 falxortru 1432 falxorfal 1433 sbnf2 2000 2eu4 2138 inidm 3372 ralidm 3551 opcom 4283 opeqsn 4285 poirr 4342 rnxpid 5104 xp11m 5108 fununi 5326 brprcneu 5551 erinxp 6668 dom2lem 6831 dmaddpi 7392 dmmulpi 7393 enq0ref 7500 enq0tr 7501 expap0 10661 sqap0 10698 xrmaxiflemcom 11414 gcddvds 12130 isnsg2 13333 eqger 13354 xmeter 14672 |
| Copyright terms: Public domain | W3C validator |