![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > anidm | GIF version |
Description: Idempotent law for conjunction. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 14-Mar-2014.) |
Ref | Expression |
---|---|
anidm | ⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.24 388 | . 2 ⊢ (𝜑 ↔ (𝜑 ∧ 𝜑)) | |
2 | 1 | bicomi 131 | 1 ⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: anidmdbi 391 anandi 558 anandir 559 truantru 1338 falanfal 1341 truxortru 1356 truxorfal 1357 falxortru 1358 falxorfal 1359 sbnf2 1906 2eu4 2042 inidm 3212 ralidm 3388 opcom 4088 opeqsn 4090 poirr 4145 rnxpid 4880 xp11m 4884 fununi 5097 brprcneu 5313 erinxp 6382 dom2lem 6545 dmaddpi 6947 dmmulpi 6948 enq0ref 7055 enq0tr 7056 expap0 10048 sqap0 10084 gcddvds 11296 |
Copyright terms: Public domain | W3C validator |