| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anidm | GIF version | ||
| Description: Idempotent law for conjunction. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 14-Mar-2014.) |
| Ref | Expression |
|---|---|
| anidm | ⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.24 395 | . 2 ⊢ (𝜑 ↔ (𝜑 ∧ 𝜑)) | |
| 2 | 1 | bicomi 132 | 1 ⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: anidmdbi 398 anandi 590 anandir 591 truantru 1421 falanfal 1424 truxortru 1439 truxorfal 1440 falxortru 1441 falxorfal 1442 sbnf2 2010 2eu4 2149 inidm 3390 ralidm 3569 opcom 4313 opeqsn 4315 poirr 4372 rnxpid 5136 xp11m 5140 fununi 5361 brprcneu 5592 erinxp 6719 dom2lem 6886 dmaddpi 7473 dmmulpi 7474 enq0ref 7581 enq0tr 7582 expap0 10751 sqap0 10788 xrmaxiflemcom 11675 gcddvds 12399 isnsg2 13654 eqger 13675 xmeter 15023 |
| Copyright terms: Public domain | W3C validator |