![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > anidm | GIF version |
Description: Idempotent law for conjunction. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 14-Mar-2014.) |
Ref | Expression |
---|---|
anidm | ⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.24 395 | . 2 ⊢ (𝜑 ↔ (𝜑 ∧ 𝜑)) | |
2 | 1 | bicomi 132 | 1 ⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: anidmdbi 398 anandi 590 anandir 591 truantru 1412 falanfal 1415 truxortru 1430 truxorfal 1431 falxortru 1432 falxorfal 1433 sbnf2 1997 2eu4 2135 inidm 3369 ralidm 3548 opcom 4280 opeqsn 4282 poirr 4339 rnxpid 5101 xp11m 5105 fununi 5323 brprcneu 5548 erinxp 6665 dom2lem 6828 dmaddpi 7387 dmmulpi 7388 enq0ref 7495 enq0tr 7496 expap0 10643 sqap0 10680 xrmaxiflemcom 11395 gcddvds 12103 isnsg2 13276 eqger 13297 xmeter 14615 |
Copyright terms: Public domain | W3C validator |