Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > anidm | GIF version |
Description: Idempotent law for conjunction. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 14-Mar-2014.) |
Ref | Expression |
---|---|
anidm | ⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.24 393 | . 2 ⊢ (𝜑 ↔ (𝜑 ∧ 𝜑)) | |
2 | 1 | bicomi 131 | 1 ⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: anidmdbi 396 anandi 580 anandir 581 truantru 1391 falanfal 1394 truxortru 1409 truxorfal 1410 falxortru 1411 falxorfal 1412 sbnf2 1969 2eu4 2107 inidm 3331 ralidm 3509 opcom 4228 opeqsn 4230 poirr 4285 rnxpid 5038 xp11m 5042 fununi 5256 brprcneu 5479 erinxp 6575 dom2lem 6738 dmaddpi 7266 dmmulpi 7267 enq0ref 7374 enq0tr 7375 expap0 10485 sqap0 10521 xrmaxiflemcom 11190 gcddvds 11896 xmeter 13076 |
Copyright terms: Public domain | W3C validator |