| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anidm | GIF version | ||
| Description: Idempotent law for conjunction. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 14-Mar-2014.) |
| Ref | Expression |
|---|---|
| anidm | ⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.24 395 | . 2 ⊢ (𝜑 ↔ (𝜑 ∧ 𝜑)) | |
| 2 | 1 | bicomi 132 | 1 ⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: anidmdbi 398 anandi 592 anandir 593 truantru 1443 falanfal 1446 truxortru 1461 truxorfal 1462 falxortru 1463 falxorfal 1464 sbnf2 2032 2eu4 2171 inidm 3413 ralidm 3592 opcom 4336 opeqsn 4338 poirr 4397 rnxpid 5162 xp11m 5166 fununi 5388 brprcneu 5619 erinxp 6754 dom2lem 6921 dmaddpi 7508 dmmulpi 7509 enq0ref 7616 enq0tr 7617 expap0 10786 sqap0 10823 xrmaxiflemcom 11755 gcddvds 12479 isnsg2 13735 eqger 13756 xmeter 15104 |
| Copyright terms: Public domain | W3C validator |