| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anidm | GIF version | ||
| Description: Idempotent law for conjunction. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 14-Mar-2014.) |
| Ref | Expression |
|---|---|
| anidm | ⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.24 395 | . 2 ⊢ (𝜑 ↔ (𝜑 ∧ 𝜑)) | |
| 2 | 1 | bicomi 132 | 1 ⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: anidmdbi 398 anandi 590 anandir 591 truantru 1412 falanfal 1415 truxortru 1430 truxorfal 1431 falxortru 1432 falxorfal 1433 sbnf2 2000 2eu4 2138 inidm 3373 ralidm 3552 opcom 4284 opeqsn 4286 poirr 4343 rnxpid 5105 xp11m 5109 fununi 5327 brprcneu 5554 erinxp 6677 dom2lem 6840 dmaddpi 7409 dmmulpi 7410 enq0ref 7517 enq0tr 7518 expap0 10678 sqap0 10715 xrmaxiflemcom 11431 gcddvds 12155 isnsg2 13409 eqger 13430 xmeter 14756 |
| Copyright terms: Public domain | W3C validator |