| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anidm | GIF version | ||
| Description: Idempotent law for conjunction. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 14-Mar-2014.) |
| Ref | Expression |
|---|---|
| anidm | ⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.24 395 | . 2 ⊢ (𝜑 ↔ (𝜑 ∧ 𝜑)) | |
| 2 | 1 | bicomi 132 | 1 ⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: anidmdbi 398 anandi 590 anandir 591 truantru 1420 falanfal 1423 truxortru 1438 truxorfal 1439 falxortru 1440 falxorfal 1441 sbnf2 2008 2eu4 2146 inidm 3381 ralidm 3560 opcom 4294 opeqsn 4296 poirr 4353 rnxpid 5116 xp11m 5120 fununi 5341 brprcneu 5568 erinxp 6695 dom2lem 6862 dmaddpi 7437 dmmulpi 7438 enq0ref 7545 enq0tr 7546 expap0 10712 sqap0 10749 xrmaxiflemcom 11531 gcddvds 12255 isnsg2 13510 eqger 13531 xmeter 14879 |
| Copyright terms: Public domain | W3C validator |