ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  anidm GIF version

Theorem anidm 396
Description: Idempotent law for conjunction. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 14-Mar-2014.)
Assertion
Ref Expression
anidm ((𝜑𝜑) ↔ 𝜑)

Proof of Theorem anidm
StepHypRef Expression
1 pm4.24 395 . 2 (𝜑 ↔ (𝜑𝜑))
21bicomi 132 1 ((𝜑𝜑) ↔ 𝜑)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  anidmdbi  398  anandi  590  anandir  591  truantru  1420  falanfal  1423  truxortru  1438  truxorfal  1439  falxortru  1440  falxorfal  1441  sbnf2  2008  2eu4  2146  inidm  3381  ralidm  3560  opcom  4294  opeqsn  4296  poirr  4353  rnxpid  5116  xp11m  5120  fununi  5341  brprcneu  5568  erinxp  6695  dom2lem  6862  dmaddpi  7437  dmmulpi  7438  enq0ref  7545  enq0tr  7546  expap0  10712  sqap0  10749  xrmaxiflemcom  11531  gcddvds  12255  isnsg2  13510  eqger  13531  xmeter  14879
  Copyright terms: Public domain W3C validator