| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gencl | GIF version | ||
| Description: Implicit substitution for class with embedded variable. (Contributed by NM, 17-May-1996.) |
| Ref | Expression |
|---|---|
| gencl.1 | ⊢ (𝜃 ↔ ∃𝑥(𝜒 ∧ 𝐴 = 𝐵)) |
| gencl.2 | ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) |
| gencl.3 | ⊢ (𝜒 → 𝜑) |
| Ref | Expression |
|---|---|
| gencl | ⊢ (𝜃 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gencl.1 | . 2 ⊢ (𝜃 ↔ ∃𝑥(𝜒 ∧ 𝐴 = 𝐵)) | |
| 2 | gencl.3 | . . . . 5 ⊢ (𝜒 → 𝜑) | |
| 3 | gencl.2 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) | |
| 4 | 2, 3 | imbitrid 154 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝜒 → 𝜓)) |
| 5 | 4 | impcom 125 | . . 3 ⊢ ((𝜒 ∧ 𝐴 = 𝐵) → 𝜓) |
| 6 | 5 | exlimiv 1612 | . 2 ⊢ (∃𝑥(𝜒 ∧ 𝐴 = 𝐵) → 𝜓) |
| 7 | 1, 6 | sylbi 121 | 1 ⊢ (𝜃 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∃wex 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-gen 1463 ax-ie2 1508 ax-17 1540 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 2gencl 2796 3gencl 2797 axprecex 7964 axpre-ltirr 7966 |
| Copyright terms: Public domain | W3C validator |