| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > exlimiv | GIF version | ||
| Description: Inference from Theorem
19.23 of [Margaris] p. 90.
 This inference, along with our many variants is used to implement a metatheorem called "Rule C" that is given in many logic textbooks. See, for example, Rule C in [Mendelson] p. 81, Rule C in [Margaris] p. 40, or Rule C in Hirst and Hirst's A Primer for Logic and Proof p. 59 (PDF p. 65) at http://www.mathsci.appstate.edu/~jlh/primer/hirst.pdf. In informal proofs, the statement "Let C be an element such that..." almost always means an implicit application of Rule C. In essence, Rule C states that if we can prove that some element 𝑥 exists satisfying a wff, i.e. ∃𝑥𝜑(𝑥) where 𝜑(𝑥) has 𝑥 free, then we can use 𝜑( C ) as a hypothesis for the proof where C is a new (ficticious) constant not appearing previously in the proof, nor in any axioms used, nor in the theorem to be proved. The purpose of Rule C is to get rid of the existential quantifier. We cannot do this in Metamath directly. Instead, we use the original 𝜑 (containing 𝑥) as an antecedent for the main part of the proof. We eventually arrive at (𝜑 → 𝜓) where 𝜓 is the theorem to be proved and does not contain 𝑥. Then we apply exlimiv 1612 to arrive at (∃𝑥𝜑 → 𝜓). Finally, we separately prove ∃𝑥𝜑 and detach it with modus ponens ax-mp 5 to arrive at the final theorem 𝜓. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 25-Jul-2012.)  | 
| Ref | Expression | 
|---|---|
| exlimiv.1 | ⊢ (𝜑 → 𝜓) | 
| Ref | Expression | 
|---|---|
| exlimiv | ⊢ (∃𝑥𝜑 → 𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax-17 1540 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) | |
| 2 | exlimiv.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | exlimih 1607 | 1 ⊢ (∃𝑥𝜑 → 𝜓) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∃wex 1506 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-gen 1463 ax-ie2 1508 ax-17 1540 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: ax11v 1841 ax11ev 1842 equs5or 1844 exlimivv 1911 cbvexvw 1935 mo23 2086 mopick 2123 gencl 2795 cgsexg 2798 gencbvex2 2811 vtocleg 2835 eqvinc 2887 eqvincg 2888 elrabi 2917 sbcex2 3043 oprcl 3832 eluni 3842 intab 3903 uniintsnr 3910 trintssm 4147 bm1.3ii 4154 inteximm 4182 axpweq 4204 bnd2 4206 unipw 4250 euabex 4258 mss 4259 exss 4260 opelopabsb 4294 eusvnf 4488 eusvnfb 4489 regexmidlem1 4569 eunex 4597 relop 4816 dmrnssfld 4929 xpmlem 5090 dmxpss 5100 dmsnopg 5141 elxp5 5158 iotauni 5231 iota1 5233 iota4 5238 iotam 5250 funimaexglem 5341 ffoss 5536 relelfvdm 5590 elfvm 5591 nfvres 5592 fvelrnb 5608 eusvobj2 5908 acexmidlemv 5920 fnoprabg 6023 fo1stresm 6219 fo2ndresm 6220 eloprabi 6254 cnvoprab 6292 reldmtpos 6311 dftpos4 6321 tfrlem9 6377 tfrexlem 6392 ecdmn0m 6636 mapprc 6711 ixpprc 6778 ixpm 6789 bren 6806 brdomg 6807 ener 6838 en0 6854 en1 6858 en1bg 6859 2dom 6864 fiprc 6874 enm 6879 ssenen 6912 php5dom 6924 ssfilem 6936 diffitest 6948 inffiexmid 6967 ctm 7175 ctssdclemr 7178 ctssdc 7179 enumct 7181 ctfoex 7184 ctssexmid 7216 pm54.43 7257 subhalfnqq 7481 nqnq0pi 7505 nqnq0 7508 prarloc 7570 nqprm 7609 ltexprlemm 7667 recexprlemell 7689 recexprlemelu 7690 recexprlemopl 7692 recexprlemopu 7694 recexprlempr 7699 sup3exmid 8984 fzm 10113 fzom 10240 fclim 11459 climmo 11463 nninfct 12208 ctinfom 12645 qnnen 12648 unct 12659 omiunct 12661 opifismgmdc 13014 ismgmid 13020 gsumval2 13040 ismnd 13060 dfgrp2e 13160 dfgrp3me 13232 subgintm 13328 zrhval 14173 topnex 14322 bdbm1.3ii 15537 | 
| Copyright terms: Public domain | W3C validator |