| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exlimiv | GIF version | ||
| Description: Inference from Theorem
19.23 of [Margaris] p. 90.
This inference, along with our many variants is used to implement a metatheorem called "Rule C" that is given in many logic textbooks. See, for example, Rule C in [Mendelson] p. 81, Rule C in [Margaris] p. 40, or Rule C in Hirst and Hirst's A Primer for Logic and Proof p. 59 (PDF p. 65) at http://www.mathsci.appstate.edu/~jlh/primer/hirst.pdf. In informal proofs, the statement "Let C be an element such that..." almost always means an implicit application of Rule C. In essence, Rule C states that if we can prove that some element 𝑥 exists satisfying a wff, i.e. ∃𝑥𝜑(𝑥) where 𝜑(𝑥) has 𝑥 free, then we can use 𝜑( C ) as a hypothesis for the proof where C is a new (ficticious) constant not appearing previously in the proof, nor in any axioms used, nor in the theorem to be proved. The purpose of Rule C is to get rid of the existential quantifier. We cannot do this in Metamath directly. Instead, we use the original 𝜑 (containing 𝑥) as an antecedent for the main part of the proof. We eventually arrive at (𝜑 → 𝜓) where 𝜓 is the theorem to be proved and does not contain 𝑥. Then we apply exlimiv 1644 to arrive at (∃𝑥𝜑 → 𝜓). Finally, we separately prove ∃𝑥𝜑 and detach it with modus ponens ax-mp 5 to arrive at the final theorem 𝜓. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 25-Jul-2012.) |
| Ref | Expression |
|---|---|
| exlimiv.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| exlimiv | ⊢ (∃𝑥𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1572 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) | |
| 2 | exlimiv.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | exlimih 1639 | 1 ⊢ (∃𝑥𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∃wex 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-gen 1495 ax-ie2 1540 ax-17 1572 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ax11v 1873 ax11ev 1874 equs5or 1876 exlimivv 1943 cbvexvw 1967 mo23 2119 mopick 2156 gencl 2832 cgsexg 2835 gencbvex2 2848 vtocleg 2874 eqvinc 2926 eqvincg 2927 elrabi 2956 sbcex2 3082 oprcl 3880 eluni 3890 intab 3951 uniintsnr 3958 trintssm 4197 bm1.3ii 4204 inteximm 4232 axpweq 4254 bnd2 4256 unipw 4302 euabex 4310 mss 4311 exss 4312 opelopabsb 4347 eusvnf 4543 eusvnfb 4544 regexmidlem1 4624 eunex 4652 relop 4871 dmrnssfld 4986 xpmlem 5148 dmxpss 5158 dmsnopg 5199 elxp5 5216 iotauni 5290 iota1 5292 iota4 5297 iotam 5309 funimaexglem 5403 ffoss 5603 relelfvdm 5658 elfvm 5659 nfvres 5662 fvelrnb 5680 funopsn 5816 funop 5817 funopdmsn 5818 eusvobj2 5986 acexmidlemv 5998 fnoprabg 6104 fo1stresm 6305 fo2ndresm 6306 eloprabi 6340 cnvoprab 6378 reldmtpos 6397 dftpos4 6407 tfrlem9 6463 tfrexlem 6478 ecdmn0m 6722 mapprc 6797 ixpprc 6864 ixpm 6875 bren 6893 brdomg 6895 domssr 6927 ener 6929 en0 6945 en1 6949 en1bg 6950 2dom 6956 fiprc 6966 enm 6975 ssenen 7008 php5dom 7020 ssfilem 7033 diffitest 7045 inffiexmid 7064 ctm 7272 ctssdclemr 7275 ctssdc 7276 enumct 7278 ctfoex 7281 ctssexmid 7313 pm54.43 7359 pr2cv1 7364 acnrcl 7379 subhalfnqq 7597 nqnq0pi 7621 nqnq0 7624 prarloc 7686 nqprm 7725 ltexprlemm 7783 recexprlemell 7805 recexprlemelu 7806 recexprlemopl 7808 recexprlemopu 7810 recexprlempr 7815 sup3exmid 9100 fzm 10230 fzom 10357 fclim 11800 climmo 11804 nninfct 12557 ctinfom 12994 qnnen 12997 unct 13008 omiunct 13010 opifismgmdc 13399 ismgmid 13405 gsumval2 13425 ismnd 13447 dfgrp2e 13556 dfgrp3me 13628 subgintm 13730 zrhval 14575 topnex 14754 upgrex 15897 bdbm1.3ii 16212 dom1o 16314 domomsubct 16326 |
| Copyright terms: Public domain | W3C validator |