Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exlimiv | GIF version |
Description: Inference from Theorem
19.23 of [Margaris] p. 90.
This inference, along with our many variants is used to implement a metatheorem called "Rule C" that is given in many logic textbooks. See, for example, Rule C in [Mendelson] p. 81, Rule C in [Margaris] p. 40, or Rule C in Hirst and Hirst's A Primer for Logic and Proof p. 59 (PDF p. 65) at http://www.mathsci.appstate.edu/~jlh/primer/hirst.pdf. In informal proofs, the statement "Let C be an element such that..." almost always means an implicit application of Rule C. In essence, Rule C states that if we can prove that some element 𝑥 exists satisfying a wff, i.e. ∃𝑥𝜑(𝑥) where 𝜑(𝑥) has 𝑥 free, then we can use 𝜑( C ) as a hypothesis for the proof where C is a new (ficticious) constant not appearing previously in the proof, nor in any axioms used, nor in the theorem to be proved. The purpose of Rule C is to get rid of the existential quantifier. We cannot do this in Metamath directly. Instead, we use the original 𝜑 (containing 𝑥) as an antecedent for the main part of the proof. We eventually arrive at (𝜑 → 𝜓) where 𝜓 is the theorem to be proved and does not contain 𝑥. Then we apply exlimiv 1591 to arrive at (∃𝑥𝜑 → 𝜓). Finally, we separately prove ∃𝑥𝜑 and detach it with modus ponens ax-mp 5 to arrive at the final theorem 𝜓. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 25-Jul-2012.) |
Ref | Expression |
---|---|
exlimiv.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
exlimiv | ⊢ (∃𝑥𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1519 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) | |
2 | exlimiv.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | exlimih 1586 | 1 ⊢ (∃𝑥𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃wex 1485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-gen 1442 ax-ie2 1487 ax-17 1519 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: ax11v 1820 ax11ev 1821 equs5or 1823 exlimivv 1889 cbvexvw 1913 mo23 2060 mopick 2097 gencl 2762 cgsexg 2765 gencbvex2 2777 vtocleg 2801 eqvinc 2853 eqvincg 2854 elrabi 2883 sbcex2 3008 oprcl 3789 eluni 3799 intab 3860 uniintsnr 3867 trintssm 4103 bm1.3ii 4110 inteximm 4135 axpweq 4157 bnd2 4159 unipw 4202 euabex 4210 mss 4211 exss 4212 opelopabsb 4245 eusvnf 4438 eusvnfb 4439 regexmidlem1 4517 eunex 4545 relop 4761 dmrnssfld 4874 xpmlem 5031 dmxpss 5041 dmsnopg 5082 elxp5 5099 iotauni 5172 iota1 5174 iota4 5178 iotam 5190 funimaexglem 5281 ffoss 5474 relelfvdm 5528 nfvres 5529 fvelrnb 5544 eusvobj2 5839 acexmidlemv 5851 fnoprabg 5954 fo1stresm 6140 fo2ndresm 6141 eloprabi 6175 cnvoprab 6213 reldmtpos 6232 dftpos4 6242 tfrlem9 6298 tfrexlem 6313 ecdmn0m 6555 mapprc 6630 ixpprc 6697 ixpm 6708 bren 6725 brdomg 6726 ener 6757 en0 6773 en1 6777 en1bg 6778 2dom 6783 fiprc 6793 enm 6798 ssenen 6829 php5dom 6841 ssfilem 6853 diffitest 6865 inffiexmid 6884 ctm 7086 ctssdclemr 7089 ctssdc 7090 enumct 7092 ctfoex 7095 ctssexmid 7126 pm54.43 7167 subhalfnqq 7376 nqnq0pi 7400 nqnq0 7403 prarloc 7465 nqprm 7504 ltexprlemm 7562 recexprlemell 7584 recexprlemelu 7585 recexprlemopl 7587 recexprlemopu 7589 recexprlempr 7594 sup3exmid 8873 fzm 9994 fzom 10120 fclim 11257 climmo 11261 ctinfom 12383 qnnen 12386 unct 12397 omiunct 12399 opifismgmdc 12625 ismgmid 12631 ismnd 12655 dfgrp2e 12733 topnex 12880 bdbm1.3ii 13926 |
Copyright terms: Public domain | W3C validator |