![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > exlimiv | GIF version |
Description: Inference from Theorem
19.23 of [Margaris] p. 90.
This inference, along with our many variants is used to implement a metatheorem called "Rule C" that is given in many logic textbooks. See, for example, Rule C in [Mendelson] p. 81, Rule C in [Margaris] p. 40, or Rule C in Hirst and Hirst's A Primer for Logic and Proof p. 59 (PDF p. 65) at http://www.mathsci.appstate.edu/~jlh/primer/hirst.pdf. In informal proofs, the statement "Let C be an element such that..." almost always means an implicit application of Rule C. In essence, Rule C states that if we can prove that some element 𝑥 exists satisfying a wff, i.e. ∃𝑥𝜑(𝑥) where 𝜑(𝑥) has 𝑥 free, then we can use 𝜑( C ) as a hypothesis for the proof where C is a new (ficticious) constant not appearing previously in the proof, nor in any axioms used, nor in the theorem to be proved. The purpose of Rule C is to get rid of the existential quantifier. We cannot do this in Metamath directly. Instead, we use the original 𝜑 (containing 𝑥) as an antecedent for the main part of the proof. We eventually arrive at (𝜑 → 𝜓) where 𝜓 is the theorem to be proved and does not contain 𝑥. Then we apply exlimiv 1609 to arrive at (∃𝑥𝜑 → 𝜓). Finally, we separately prove ∃𝑥𝜑 and detach it with modus ponens ax-mp 5 to arrive at the final theorem 𝜓. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 25-Jul-2012.) |
Ref | Expression |
---|---|
exlimiv.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
exlimiv | ⊢ (∃𝑥𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1537 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) | |
2 | exlimiv.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | exlimih 1604 | 1 ⊢ (∃𝑥𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃wex 1503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-gen 1460 ax-ie2 1505 ax-17 1537 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: ax11v 1838 ax11ev 1839 equs5or 1841 exlimivv 1908 cbvexvw 1932 mo23 2083 mopick 2120 gencl 2792 cgsexg 2795 gencbvex2 2808 vtocleg 2832 eqvinc 2884 eqvincg 2885 elrabi 2914 sbcex2 3040 oprcl 3829 eluni 3839 intab 3900 uniintsnr 3907 trintssm 4144 bm1.3ii 4151 inteximm 4179 axpweq 4201 bnd2 4203 unipw 4247 euabex 4255 mss 4256 exss 4257 opelopabsb 4291 eusvnf 4485 eusvnfb 4486 regexmidlem1 4566 eunex 4594 relop 4813 dmrnssfld 4926 xpmlem 5087 dmxpss 5097 dmsnopg 5138 elxp5 5155 iotauni 5228 iota1 5230 iota4 5235 iotam 5247 funimaexglem 5338 ffoss 5533 relelfvdm 5587 elfvm 5588 nfvres 5589 fvelrnb 5605 eusvobj2 5905 acexmidlemv 5917 fnoprabg 6020 fo1stresm 6216 fo2ndresm 6217 eloprabi 6251 cnvoprab 6289 reldmtpos 6308 dftpos4 6318 tfrlem9 6374 tfrexlem 6389 ecdmn0m 6633 mapprc 6708 ixpprc 6775 ixpm 6786 bren 6803 brdomg 6804 ener 6835 en0 6851 en1 6855 en1bg 6856 2dom 6861 fiprc 6871 enm 6876 ssenen 6909 php5dom 6921 ssfilem 6933 diffitest 6945 inffiexmid 6964 ctm 7170 ctssdclemr 7173 ctssdc 7174 enumct 7176 ctfoex 7179 ctssexmid 7211 pm54.43 7252 subhalfnqq 7476 nqnq0pi 7500 nqnq0 7503 prarloc 7565 nqprm 7604 ltexprlemm 7662 recexprlemell 7684 recexprlemelu 7685 recexprlemopl 7687 recexprlemopu 7689 recexprlempr 7694 sup3exmid 8978 fzm 10107 fzom 10234 fclim 11440 climmo 11444 nninfct 12181 ctinfom 12588 qnnen 12591 unct 12602 omiunct 12604 opifismgmdc 12957 ismgmid 12963 gsumval2 12983 ismnd 13003 dfgrp2e 13103 dfgrp3me 13175 subgintm 13271 zrhval 14116 topnex 14265 bdbm1.3ii 15453 |
Copyright terms: Public domain | W3C validator |