![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > exlimiv | GIF version |
Description: Inference from Theorem
19.23 of [Margaris] p. 90.
This inference, along with our many variants is used to implement a metatheorem called "Rule C" that is given in many logic textbooks. See, for example, Rule C in [Mendelson] p. 81, Rule C in [Margaris] p. 40, or Rule C in Hirst and Hirst's A Primer for Logic and Proof p. 59 (PDF p. 65) at http://www.mathsci.appstate.edu/~jlh/primer/hirst.pdf. In informal proofs, the statement "Let C be an element such that..." almost always means an implicit application of Rule C. In essence, Rule C states that if we can prove that some element 𝑥 exists satisfying a wff, i.e. ∃𝑥𝜑(𝑥) where 𝜑(𝑥) has 𝑥 free, then we can use 𝜑( C ) as a hypothesis for the proof where C is a new (ficticious) constant not appearing previously in the proof, nor in any axioms used, nor in the theorem to be proved. The purpose of Rule C is to get rid of the existential quantifier. We cannot do this in Metamath directly. Instead, we use the original 𝜑 (containing 𝑥) as an antecedent for the main part of the proof. We eventually arrive at (𝜑 → 𝜓) where 𝜓 is the theorem to be proved and does not contain 𝑥. Then we apply exlimiv 1598 to arrive at (∃𝑥𝜑 → 𝜓). Finally, we separately prove ∃𝑥𝜑 and detach it with modus ponens ax-mp 5 to arrive at the final theorem 𝜓. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 25-Jul-2012.) |
Ref | Expression |
---|---|
exlimiv.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
exlimiv | ⊢ (∃𝑥𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1526 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) | |
2 | exlimiv.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | exlimih 1593 | 1 ⊢ (∃𝑥𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃wex 1492 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-gen 1449 ax-ie2 1494 ax-17 1526 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: ax11v 1827 ax11ev 1828 equs5or 1830 exlimivv 1896 cbvexvw 1920 mo23 2067 mopick 2104 gencl 2769 cgsexg 2772 gencbvex2 2784 vtocleg 2808 eqvinc 2860 eqvincg 2861 elrabi 2890 sbcex2 3016 oprcl 3802 eluni 3812 intab 3873 uniintsnr 3880 trintssm 4117 bm1.3ii 4124 inteximm 4149 axpweq 4171 bnd2 4173 unipw 4217 euabex 4225 mss 4226 exss 4227 opelopabsb 4260 eusvnf 4453 eusvnfb 4454 regexmidlem1 4532 eunex 4560 relop 4777 dmrnssfld 4890 xpmlem 5049 dmxpss 5059 dmsnopg 5100 elxp5 5117 iotauni 5190 iota1 5192 iota4 5196 iotam 5208 funimaexglem 5299 ffoss 5493 relelfvdm 5547 nfvres 5548 fvelrnb 5563 eusvobj2 5860 acexmidlemv 5872 fnoprabg 5975 fo1stresm 6161 fo2ndresm 6162 eloprabi 6196 cnvoprab 6234 reldmtpos 6253 dftpos4 6263 tfrlem9 6319 tfrexlem 6334 ecdmn0m 6576 mapprc 6651 ixpprc 6718 ixpm 6729 bren 6746 brdomg 6747 ener 6778 en0 6794 en1 6798 en1bg 6799 2dom 6804 fiprc 6814 enm 6819 ssenen 6850 php5dom 6862 ssfilem 6874 diffitest 6886 inffiexmid 6905 ctm 7107 ctssdclemr 7110 ctssdc 7111 enumct 7113 ctfoex 7116 ctssexmid 7147 pm54.43 7188 subhalfnqq 7412 nqnq0pi 7436 nqnq0 7439 prarloc 7501 nqprm 7540 ltexprlemm 7598 recexprlemell 7620 recexprlemelu 7621 recexprlemopl 7623 recexprlemopu 7625 recexprlempr 7630 sup3exmid 8913 fzm 10037 fzom 10163 fclim 11301 climmo 11305 ctinfom 12428 qnnen 12431 unct 12442 omiunct 12444 opifismgmdc 12789 ismgmid 12795 ismnd 12819 dfgrp2e 12902 dfgrp3me 12969 subgintm 13056 topnex 13556 bdbm1.3ii 14613 |
Copyright terms: Public domain | W3C validator |