| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exlimiv | GIF version | ||
| Description: Inference from Theorem
19.23 of [Margaris] p. 90.
This inference, along with our many variants is used to implement a metatheorem called "Rule C" that is given in many logic textbooks. See, for example, Rule C in [Mendelson] p. 81, Rule C in [Margaris] p. 40, or Rule C in Hirst and Hirst's A Primer for Logic and Proof p. 59 (PDF p. 65) at http://www.mathsci.appstate.edu/~jlh/primer/hirst.pdf. In informal proofs, the statement "Let C be an element such that..." almost always means an implicit application of Rule C. In essence, Rule C states that if we can prove that some element 𝑥 exists satisfying a wff, i.e. ∃𝑥𝜑(𝑥) where 𝜑(𝑥) has 𝑥 free, then we can use 𝜑( C ) as a hypothesis for the proof where C is a new (ficticious) constant not appearing previously in the proof, nor in any axioms used, nor in the theorem to be proved. The purpose of Rule C is to get rid of the existential quantifier. We cannot do this in Metamath directly. Instead, we use the original 𝜑 (containing 𝑥) as an antecedent for the main part of the proof. We eventually arrive at (𝜑 → 𝜓) where 𝜓 is the theorem to be proved and does not contain 𝑥. Then we apply exlimiv 1622 to arrive at (∃𝑥𝜑 → 𝜓). Finally, we separately prove ∃𝑥𝜑 and detach it with modus ponens ax-mp 5 to arrive at the final theorem 𝜓. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 25-Jul-2012.) |
| Ref | Expression |
|---|---|
| exlimiv.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| exlimiv | ⊢ (∃𝑥𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1550 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) | |
| 2 | exlimiv.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | exlimih 1617 | 1 ⊢ (∃𝑥𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∃wex 1516 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-gen 1473 ax-ie2 1518 ax-17 1550 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ax11v 1851 ax11ev 1852 equs5or 1854 exlimivv 1921 cbvexvw 1945 mo23 2096 mopick 2133 gencl 2806 cgsexg 2809 gencbvex2 2822 vtocleg 2848 eqvinc 2900 eqvincg 2901 elrabi 2930 sbcex2 3056 oprcl 3849 eluni 3859 intab 3920 uniintsnr 3927 trintssm 4166 bm1.3ii 4173 inteximm 4201 axpweq 4223 bnd2 4225 unipw 4269 euabex 4277 mss 4278 exss 4279 opelopabsb 4314 eusvnf 4508 eusvnfb 4509 regexmidlem1 4589 eunex 4617 relop 4836 dmrnssfld 4950 xpmlem 5112 dmxpss 5122 dmsnopg 5163 elxp5 5180 iotauni 5253 iota1 5255 iota4 5260 iotam 5272 funimaexglem 5366 ffoss 5566 relelfvdm 5621 elfvm 5622 nfvres 5623 fvelrnb 5639 funopsn 5775 funop 5776 funopdmsn 5777 eusvobj2 5943 acexmidlemv 5955 fnoprabg 6059 fo1stresm 6260 fo2ndresm 6261 eloprabi 6295 cnvoprab 6333 reldmtpos 6352 dftpos4 6362 tfrlem9 6418 tfrexlem 6433 ecdmn0m 6677 mapprc 6752 ixpprc 6819 ixpm 6830 bren 6848 brdomg 6850 domssr 6882 ener 6884 en0 6900 en1 6904 en1bg 6905 2dom 6911 fiprc 6921 enm 6930 ssenen 6963 php5dom 6975 ssfilem 6987 diffitest 6999 inffiexmid 7018 ctm 7226 ctssdclemr 7229 ctssdc 7230 enumct 7232 ctfoex 7235 ctssexmid 7267 pm54.43 7313 acnrcl 7329 subhalfnqq 7547 nqnq0pi 7571 nqnq0 7574 prarloc 7636 nqprm 7675 ltexprlemm 7733 recexprlemell 7755 recexprlemelu 7756 recexprlemopl 7758 recexprlemopu 7760 recexprlempr 7765 sup3exmid 9050 fzm 10180 fzom 10307 fclim 11680 climmo 11684 nninfct 12437 ctinfom 12874 qnnen 12877 unct 12888 omiunct 12890 opifismgmdc 13278 ismgmid 13284 gsumval2 13304 ismnd 13326 dfgrp2e 13435 dfgrp3me 13507 subgintm 13609 zrhval 14454 topnex 14633 upgrex 15774 bdbm1.3ii 15965 dom1o 16067 domomsubct 16079 |
| Copyright terms: Public domain | W3C validator |