| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exlimiv | GIF version | ||
| Description: Inference from Theorem
19.23 of [Margaris] p. 90.
This inference, along with our many variants is used to implement a metatheorem called "Rule C" that is given in many logic textbooks. See, for example, Rule C in [Mendelson] p. 81, Rule C in [Margaris] p. 40, or Rule C in Hirst and Hirst's A Primer for Logic and Proof p. 59 (PDF p. 65) at http://www.mathsci.appstate.edu/~jlh/primer/hirst.pdf. In informal proofs, the statement "Let C be an element such that..." almost always means an implicit application of Rule C. In essence, Rule C states that if we can prove that some element 𝑥 exists satisfying a wff, i.e. ∃𝑥𝜑(𝑥) where 𝜑(𝑥) has 𝑥 free, then we can use 𝜑( C ) as a hypothesis for the proof where C is a new (ficticious) constant not appearing previously in the proof, nor in any axioms used, nor in the theorem to be proved. The purpose of Rule C is to get rid of the existential quantifier. We cannot do this in Metamath directly. Instead, we use the original 𝜑 (containing 𝑥) as an antecedent for the main part of the proof. We eventually arrive at (𝜑 → 𝜓) where 𝜓 is the theorem to be proved and does not contain 𝑥. Then we apply exlimiv 1620 to arrive at (∃𝑥𝜑 → 𝜓). Finally, we separately prove ∃𝑥𝜑 and detach it with modus ponens ax-mp 5 to arrive at the final theorem 𝜓. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 25-Jul-2012.) |
| Ref | Expression |
|---|---|
| exlimiv.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| exlimiv | ⊢ (∃𝑥𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1548 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) | |
| 2 | exlimiv.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | exlimih 1615 | 1 ⊢ (∃𝑥𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∃wex 1514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-gen 1471 ax-ie2 1516 ax-17 1548 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ax11v 1849 ax11ev 1850 equs5or 1852 exlimivv 1919 cbvexvw 1943 mo23 2094 mopick 2131 gencl 2803 cgsexg 2806 gencbvex2 2819 vtocleg 2843 eqvinc 2895 eqvincg 2896 elrabi 2925 sbcex2 3051 oprcl 3842 eluni 3852 intab 3913 uniintsnr 3920 trintssm 4157 bm1.3ii 4164 inteximm 4192 axpweq 4214 bnd2 4216 unipw 4260 euabex 4268 mss 4269 exss 4270 opelopabsb 4304 eusvnf 4498 eusvnfb 4499 regexmidlem1 4579 eunex 4607 relop 4826 dmrnssfld 4939 xpmlem 5100 dmxpss 5110 dmsnopg 5151 elxp5 5168 iotauni 5241 iota1 5243 iota4 5248 iotam 5260 funimaexglem 5351 ffoss 5548 relelfvdm 5602 elfvm 5603 nfvres 5604 fvelrnb 5620 eusvobj2 5920 acexmidlemv 5932 fnoprabg 6036 fo1stresm 6237 fo2ndresm 6238 eloprabi 6272 cnvoprab 6310 reldmtpos 6329 dftpos4 6339 tfrlem9 6395 tfrexlem 6410 ecdmn0m 6654 mapprc 6729 ixpprc 6796 ixpm 6807 bren 6824 brdomg 6825 ener 6856 en0 6872 en1 6876 en1bg 6877 2dom 6882 fiprc 6892 enm 6897 ssenen 6930 php5dom 6942 ssfilem 6954 diffitest 6966 inffiexmid 6985 ctm 7193 ctssdclemr 7196 ctssdc 7197 enumct 7199 ctfoex 7202 ctssexmid 7234 pm54.43 7280 acnrcl 7295 subhalfnqq 7509 nqnq0pi 7533 nqnq0 7536 prarloc 7598 nqprm 7637 ltexprlemm 7695 recexprlemell 7717 recexprlemelu 7718 recexprlemopl 7720 recexprlemopu 7722 recexprlempr 7727 sup3exmid 9012 fzm 10142 fzom 10269 fclim 11524 climmo 11528 nninfct 12281 ctinfom 12718 qnnen 12721 unct 12732 omiunct 12734 opifismgmdc 13121 ismgmid 13127 gsumval2 13147 ismnd 13169 dfgrp2e 13278 dfgrp3me 13350 subgintm 13452 zrhval 14297 topnex 14476 bdbm1.3ii 15691 domomsubct 15802 |
| Copyright terms: Public domain | W3C validator |