Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exlimiv | GIF version |
Description: Inference from Theorem
19.23 of [Margaris] p. 90.
This inference, along with our many variants is used to implement a metatheorem called "Rule C" that is given in many logic textbooks. See, for example, Rule C in [Mendelson] p. 81, Rule C in [Margaris] p. 40, or Rule C in Hirst and Hirst's A Primer for Logic and Proof p. 59 (PDF p. 65) at http://www.mathsci.appstate.edu/~jlh/primer/hirst.pdf. In informal proofs, the statement "Let C be an element such that..." almost always means an implicit application of Rule C. In essence, Rule C states that if we can prove that some element 𝑥 exists satisfying a wff, i.e. ∃𝑥𝜑(𝑥) where 𝜑(𝑥) has 𝑥 free, then we can use 𝜑( C ) as a hypothesis for the proof where C is a new (ficticious) constant not appearing previously in the proof, nor in any axioms used, nor in the theorem to be proved. The purpose of Rule C is to get rid of the existential quantifier. We cannot do this in Metamath directly. Instead, we use the original 𝜑 (containing 𝑥) as an antecedent for the main part of the proof. We eventually arrive at (𝜑 → 𝜓) where 𝜓 is the theorem to be proved and does not contain 𝑥. Then we apply exlimiv 1586 to arrive at (∃𝑥𝜑 → 𝜓). Finally, we separately prove ∃𝑥𝜑 and detach it with modus ponens ax-mp 5 to arrive at the final theorem 𝜓. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 25-Jul-2012.) |
Ref | Expression |
---|---|
exlimiv.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
exlimiv | ⊢ (∃𝑥𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1514 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) | |
2 | exlimiv.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | exlimih 1581 | 1 ⊢ (∃𝑥𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃wex 1480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-gen 1437 ax-ie2 1482 ax-17 1514 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: ax11v 1815 ax11ev 1816 equs5or 1818 exlimivv 1884 cbvexvw 1908 mo23 2055 mopick 2092 gencl 2758 cgsexg 2761 gencbvex2 2773 vtocleg 2797 eqvinc 2849 eqvincg 2850 elrabi 2879 sbcex2 3004 oprcl 3782 eluni 3792 intab 3853 uniintsnr 3860 trintssm 4096 bm1.3ii 4103 inteximm 4128 axpweq 4150 bnd2 4152 unipw 4195 euabex 4203 mss 4204 exss 4205 opelopabsb 4238 eusvnf 4431 eusvnfb 4432 regexmidlem1 4510 eunex 4538 relop 4754 dmrnssfld 4867 xpmlem 5024 dmxpss 5034 dmsnopg 5075 elxp5 5092 iotauni 5165 iota1 5167 iota4 5171 funimaexglem 5271 ffoss 5464 relelfvdm 5518 nfvres 5519 fvelrnb 5534 eusvobj2 5828 acexmidlemv 5840 fnoprabg 5943 fo1stresm 6129 fo2ndresm 6130 eloprabi 6164 cnvoprab 6202 reldmtpos 6221 dftpos4 6231 tfrlem9 6287 tfrexlem 6302 ecdmn0m 6543 mapprc 6618 ixpprc 6685 ixpm 6696 bren 6713 brdomg 6714 ener 6745 en0 6761 en1 6765 en1bg 6766 2dom 6771 fiprc 6781 enm 6786 ssenen 6817 php5dom 6829 ssfilem 6841 diffitest 6853 inffiexmid 6872 ctm 7074 ctssdclemr 7077 ctssdc 7078 enumct 7080 ctfoex 7083 ctssexmid 7114 pm54.43 7146 subhalfnqq 7355 nqnq0pi 7379 nqnq0 7382 prarloc 7444 nqprm 7483 ltexprlemm 7541 recexprlemell 7563 recexprlemelu 7564 recexprlemopl 7566 recexprlemopu 7568 recexprlempr 7573 sup3exmid 8852 fzm 9973 fzom 10099 fclim 11235 climmo 11239 ctinfom 12361 qnnen 12364 unct 12375 omiunct 12377 opifismgmdc 12602 ismgmid 12608 topnex 12726 bdbm1.3ii 13773 |
Copyright terms: Public domain | W3C validator |