![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > exlimiv | GIF version |
Description: Inference from Theorem
19.23 of [Margaris] p. 90.
This inference, along with our many variants is used to implement a metatheorem called "Rule C" that is given in many logic textbooks. See, for example, Rule C in [Mendelson] p. 81, Rule C in [Margaris] p. 40, or Rule C in Hirst and Hirst's A Primer for Logic and Proof p. 59 (PDF p. 65) at http://www.mathsci.appstate.edu/~jlh/primer/hirst.pdf. In informal proofs, the statement "Let C be an element such that..." almost always means an implicit application of Rule C. In essence, Rule C states that if we can prove that some element 𝑥 exists satisfying a wff, i.e. ∃𝑥𝜑(𝑥) where 𝜑(𝑥) has 𝑥 free, then we can use 𝜑( C ) as a hypothesis for the proof where C is a new (ficticious) constant not appearing previously in the proof, nor in any axioms used, nor in the theorem to be proved. The purpose of Rule C is to get rid of the existential quantifier. We cannot do this in Metamath directly. Instead, we use the original 𝜑 (containing 𝑥) as an antecedent for the main part of the proof. We eventually arrive at (𝜑 → 𝜓) where 𝜓 is the theorem to be proved and does not contain 𝑥. Then we apply exlimiv 1609 to arrive at (∃𝑥𝜑 → 𝜓). Finally, we separately prove ∃𝑥𝜑 and detach it with modus ponens ax-mp 5 to arrive at the final theorem 𝜓. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 25-Jul-2012.) |
Ref | Expression |
---|---|
exlimiv.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
exlimiv | ⊢ (∃𝑥𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1537 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) | |
2 | exlimiv.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | exlimih 1604 | 1 ⊢ (∃𝑥𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃wex 1503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-gen 1460 ax-ie2 1505 ax-17 1537 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: ax11v 1838 ax11ev 1839 equs5or 1841 exlimivv 1908 cbvexvw 1932 mo23 2083 mopick 2120 gencl 2792 cgsexg 2795 gencbvex2 2807 vtocleg 2831 eqvinc 2883 eqvincg 2884 elrabi 2913 sbcex2 3039 oprcl 3828 eluni 3838 intab 3899 uniintsnr 3906 trintssm 4143 bm1.3ii 4150 inteximm 4178 axpweq 4200 bnd2 4202 unipw 4246 euabex 4254 mss 4255 exss 4256 opelopabsb 4290 eusvnf 4484 eusvnfb 4485 regexmidlem1 4565 eunex 4593 relop 4812 dmrnssfld 4925 xpmlem 5086 dmxpss 5096 dmsnopg 5137 elxp5 5154 iotauni 5227 iota1 5229 iota4 5234 iotam 5246 funimaexglem 5337 ffoss 5532 relelfvdm 5586 elfvm 5587 nfvres 5588 fvelrnb 5604 eusvobj2 5904 acexmidlemv 5916 fnoprabg 6019 fo1stresm 6214 fo2ndresm 6215 eloprabi 6249 cnvoprab 6287 reldmtpos 6306 dftpos4 6316 tfrlem9 6372 tfrexlem 6387 ecdmn0m 6631 mapprc 6706 ixpprc 6773 ixpm 6784 bren 6801 brdomg 6802 ener 6833 en0 6849 en1 6853 en1bg 6854 2dom 6859 fiprc 6869 enm 6874 ssenen 6907 php5dom 6919 ssfilem 6931 diffitest 6943 inffiexmid 6962 ctm 7168 ctssdclemr 7171 ctssdc 7172 enumct 7174 ctfoex 7177 ctssexmid 7209 pm54.43 7250 subhalfnqq 7474 nqnq0pi 7498 nqnq0 7501 prarloc 7563 nqprm 7602 ltexprlemm 7660 recexprlemell 7682 recexprlemelu 7683 recexprlemopl 7685 recexprlemopu 7687 recexprlempr 7692 sup3exmid 8976 fzm 10104 fzom 10231 fclim 11437 climmo 11441 nninfct 12178 ctinfom 12585 qnnen 12588 unct 12599 omiunct 12601 opifismgmdc 12954 ismgmid 12960 gsumval2 12980 ismnd 13000 dfgrp2e 13100 dfgrp3me 13172 subgintm 13268 zrhval 14105 topnex 14254 bdbm1.3ii 15383 |
Copyright terms: Public domain | W3C validator |