| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exlimiv | GIF version | ||
| Description: Inference from Theorem
19.23 of [Margaris] p. 90.
This inference, along with our many variants is used to implement a metatheorem called "Rule C" that is given in many logic textbooks. See, for example, Rule C in [Mendelson] p. 81, Rule C in [Margaris] p. 40, or Rule C in Hirst and Hirst's A Primer for Logic and Proof p. 59 (PDF p. 65) at http://www.mathsci.appstate.edu/~jlh/primer/hirst.pdf. In informal proofs, the statement "Let C be an element such that..." almost always means an implicit application of Rule C. In essence, Rule C states that if we can prove that some element 𝑥 exists satisfying a wff, i.e. ∃𝑥𝜑(𝑥) where 𝜑(𝑥) has 𝑥 free, then we can use 𝜑( C ) as a hypothesis for the proof where C is a new (ficticious) constant not appearing previously in the proof, nor in any axioms used, nor in the theorem to be proved. The purpose of Rule C is to get rid of the existential quantifier. We cannot do this in Metamath directly. Instead, we use the original 𝜑 (containing 𝑥) as an antecedent for the main part of the proof. We eventually arrive at (𝜑 → 𝜓) where 𝜓 is the theorem to be proved and does not contain 𝑥. Then we apply exlimiv 1612 to arrive at (∃𝑥𝜑 → 𝜓). Finally, we separately prove ∃𝑥𝜑 and detach it with modus ponens ax-mp 5 to arrive at the final theorem 𝜓. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 25-Jul-2012.) |
| Ref | Expression |
|---|---|
| exlimiv.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| exlimiv | ⊢ (∃𝑥𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1540 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) | |
| 2 | exlimiv.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | exlimih 1607 | 1 ⊢ (∃𝑥𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∃wex 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-gen 1463 ax-ie2 1508 ax-17 1540 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ax11v 1841 ax11ev 1842 equs5or 1844 exlimivv 1911 cbvexvw 1935 mo23 2086 mopick 2123 gencl 2795 cgsexg 2798 gencbvex2 2811 vtocleg 2835 eqvinc 2887 eqvincg 2888 elrabi 2917 sbcex2 3043 oprcl 3833 eluni 3843 intab 3904 uniintsnr 3911 trintssm 4148 bm1.3ii 4155 inteximm 4183 axpweq 4205 bnd2 4207 unipw 4251 euabex 4259 mss 4260 exss 4261 opelopabsb 4295 eusvnf 4489 eusvnfb 4490 regexmidlem1 4570 eunex 4598 relop 4817 dmrnssfld 4930 xpmlem 5091 dmxpss 5101 dmsnopg 5142 elxp5 5159 iotauni 5232 iota1 5234 iota4 5239 iotam 5251 funimaexglem 5342 ffoss 5539 relelfvdm 5593 elfvm 5594 nfvres 5595 fvelrnb 5611 eusvobj2 5911 acexmidlemv 5923 fnoprabg 6027 fo1stresm 6228 fo2ndresm 6229 eloprabi 6263 cnvoprab 6301 reldmtpos 6320 dftpos4 6330 tfrlem9 6386 tfrexlem 6401 ecdmn0m 6645 mapprc 6720 ixpprc 6787 ixpm 6798 bren 6815 brdomg 6816 ener 6847 en0 6863 en1 6867 en1bg 6868 2dom 6873 fiprc 6883 enm 6888 ssenen 6921 php5dom 6933 ssfilem 6945 diffitest 6957 inffiexmid 6976 ctm 7184 ctssdclemr 7187 ctssdc 7188 enumct 7190 ctfoex 7193 ctssexmid 7225 pm54.43 7269 acnrcl 7284 subhalfnqq 7498 nqnq0pi 7522 nqnq0 7525 prarloc 7587 nqprm 7626 ltexprlemm 7684 recexprlemell 7706 recexprlemelu 7707 recexprlemopl 7709 recexprlemopu 7711 recexprlempr 7716 sup3exmid 9001 fzm 10130 fzom 10257 fclim 11476 climmo 11480 nninfct 12233 ctinfom 12670 qnnen 12673 unct 12684 omiunct 12686 opifismgmdc 13073 ismgmid 13079 gsumval2 13099 ismnd 13121 dfgrp2e 13230 dfgrp3me 13302 subgintm 13404 zrhval 14249 topnex 14406 bdbm1.3ii 15621 domomsubct 15732 |
| Copyright terms: Public domain | W3C validator |