| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exlimiv | GIF version | ||
| Description: Inference from Theorem
19.23 of [Margaris] p. 90.
This inference, along with our many variants is used to implement a metatheorem called "Rule C" that is given in many logic textbooks. See, for example, Rule C in [Mendelson] p. 81, Rule C in [Margaris] p. 40, or Rule C in Hirst and Hirst's A Primer for Logic and Proof p. 59 (PDF p. 65) at http://www.mathsci.appstate.edu/~jlh/primer/hirst.pdf. In informal proofs, the statement "Let C be an element such that..." almost always means an implicit application of Rule C. In essence, Rule C states that if we can prove that some element 𝑥 exists satisfying a wff, i.e. ∃𝑥𝜑(𝑥) where 𝜑(𝑥) has 𝑥 free, then we can use 𝜑( C ) as a hypothesis for the proof where C is a new (ficticious) constant not appearing previously in the proof, nor in any axioms used, nor in the theorem to be proved. The purpose of Rule C is to get rid of the existential quantifier. We cannot do this in Metamath directly. Instead, we use the original 𝜑 (containing 𝑥) as an antecedent for the main part of the proof. We eventually arrive at (𝜑 → 𝜓) where 𝜓 is the theorem to be proved and does not contain 𝑥. Then we apply exlimiv 1612 to arrive at (∃𝑥𝜑 → 𝜓). Finally, we separately prove ∃𝑥𝜑 and detach it with modus ponens ax-mp 5 to arrive at the final theorem 𝜓. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 25-Jul-2012.) |
| Ref | Expression |
|---|---|
| exlimiv.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| exlimiv | ⊢ (∃𝑥𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1540 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) | |
| 2 | exlimiv.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | exlimih 1607 | 1 ⊢ (∃𝑥𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∃wex 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-gen 1463 ax-ie2 1508 ax-17 1540 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ax11v 1841 ax11ev 1842 equs5or 1844 exlimivv 1911 cbvexvw 1935 mo23 2086 mopick 2123 gencl 2795 cgsexg 2798 gencbvex2 2811 vtocleg 2835 eqvinc 2887 eqvincg 2888 elrabi 2917 sbcex2 3043 oprcl 3833 eluni 3843 intab 3904 uniintsnr 3911 trintssm 4148 bm1.3ii 4155 inteximm 4183 axpweq 4205 bnd2 4207 unipw 4251 euabex 4259 mss 4260 exss 4261 opelopabsb 4295 eusvnf 4489 eusvnfb 4490 regexmidlem1 4570 eunex 4598 relop 4817 dmrnssfld 4930 xpmlem 5091 dmxpss 5101 dmsnopg 5142 elxp5 5159 iotauni 5232 iota1 5234 iota4 5239 iotam 5251 funimaexglem 5342 ffoss 5539 relelfvdm 5593 elfvm 5594 nfvres 5595 fvelrnb 5611 eusvobj2 5911 acexmidlemv 5923 fnoprabg 6027 fo1stresm 6228 fo2ndresm 6229 eloprabi 6263 cnvoprab 6301 reldmtpos 6320 dftpos4 6330 tfrlem9 6386 tfrexlem 6401 ecdmn0m 6645 mapprc 6720 ixpprc 6787 ixpm 6798 bren 6815 brdomg 6816 ener 6847 en0 6863 en1 6867 en1bg 6868 2dom 6873 fiprc 6883 enm 6888 ssenen 6921 php5dom 6933 ssfilem 6945 diffitest 6957 inffiexmid 6976 ctm 7184 ctssdclemr 7187 ctssdc 7188 enumct 7190 ctfoex 7193 ctssexmid 7225 pm54.43 7271 acnrcl 7286 subhalfnqq 7500 nqnq0pi 7524 nqnq0 7527 prarloc 7589 nqprm 7628 ltexprlemm 7686 recexprlemell 7708 recexprlemelu 7709 recexprlemopl 7711 recexprlemopu 7713 recexprlempr 7718 sup3exmid 9003 fzm 10132 fzom 10259 fclim 11478 climmo 11482 nninfct 12235 ctinfom 12672 qnnen 12675 unct 12686 omiunct 12688 opifismgmdc 13075 ismgmid 13081 gsumval2 13101 ismnd 13123 dfgrp2e 13232 dfgrp3me 13304 subgintm 13406 zrhval 14251 topnex 14430 bdbm1.3ii 15645 domomsubct 15756 |
| Copyright terms: Public domain | W3C validator |