| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > axpre-ltirr | GIF version | ||
| Description: Real number less-than is irreflexive. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-ltirr 8099. (Contributed by Jim Kingdon, 12-Jan-2020.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| axpre-ltirr | ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 <ℝ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elreal 8003 | . . 3 ⊢ (𝐴 ∈ ℝ ↔ ∃𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) | |
| 2 | df-rex 2514 | . . 3 ⊢ (∃𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴 ↔ ∃𝑥(𝑥 ∈ R ∧ 〈𝑥, 0R〉 = 𝐴)) | |
| 3 | 1, 2 | bitri 184 | . 2 ⊢ (𝐴 ∈ ℝ ↔ ∃𝑥(𝑥 ∈ R ∧ 〈𝑥, 0R〉 = 𝐴)) |
| 4 | id 19 | . . . 4 ⊢ (〈𝑥, 0R〉 = 𝐴 → 〈𝑥, 0R〉 = 𝐴) | |
| 5 | 4, 4 | breq12d 4095 | . . 3 ⊢ (〈𝑥, 0R〉 = 𝐴 → (〈𝑥, 0R〉 <ℝ 〈𝑥, 0R〉 ↔ 𝐴 <ℝ 𝐴)) |
| 6 | 5 | notbid 671 | . 2 ⊢ (〈𝑥, 0R〉 = 𝐴 → (¬ 〈𝑥, 0R〉 <ℝ 〈𝑥, 0R〉 ↔ ¬ 𝐴 <ℝ 𝐴)) |
| 7 | ltsosr 7939 | . . . . 5 ⊢ <R Or R | |
| 8 | ltrelsr 7913 | . . . . 5 ⊢ <R ⊆ (R × R) | |
| 9 | 7, 8 | soirri 5119 | . . . 4 ⊢ ¬ 𝑥 <R 𝑥 |
| 10 | ltresr 8014 | . . . 4 ⊢ (〈𝑥, 0R〉 <ℝ 〈𝑥, 0R〉 ↔ 𝑥 <R 𝑥) | |
| 11 | 9, 10 | mtbir 675 | . . 3 ⊢ ¬ 〈𝑥, 0R〉 <ℝ 〈𝑥, 0R〉 |
| 12 | 11 | a1i 9 | . 2 ⊢ (𝑥 ∈ R → ¬ 〈𝑥, 0R〉 <ℝ 〈𝑥, 0R〉) |
| 13 | 3, 6, 12 | gencl 2832 | 1 ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 <ℝ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 = wceq 1395 ∃wex 1538 ∈ wcel 2200 ∃wrex 2509 〈cop 3669 class class class wbr 4082 Rcnr 7472 0Rc0r 7473 <R cltr 7478 ℝcr 7986 <ℝ cltrr 7991 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-eprel 4377 df-id 4381 df-po 4384 df-iso 4385 df-iord 4454 df-on 4456 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-recs 6441 df-irdg 6506 df-1o 6552 df-2o 6553 df-oadd 6556 df-omul 6557 df-er 6670 df-ec 6672 df-qs 6676 df-ni 7479 df-pli 7480 df-mi 7481 df-lti 7482 df-plpq 7519 df-mpq 7520 df-enq 7522 df-nqqs 7523 df-plqqs 7524 df-mqqs 7525 df-1nqqs 7526 df-rq 7527 df-ltnqqs 7528 df-enq0 7599 df-nq0 7600 df-0nq0 7601 df-plq0 7602 df-mq0 7603 df-inp 7641 df-i1p 7642 df-iplp 7643 df-iltp 7645 df-enr 7901 df-nr 7902 df-ltr 7905 df-0r 7906 df-r 7997 df-lt 8000 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |