Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > axpre-ltirr | GIF version |
Description: Real number less-than is irreflexive. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-ltirr 7886. (Contributed by Jim Kingdon, 12-Jan-2020.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axpre-ltirr | ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 <ℝ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elreal 7790 | . . 3 ⊢ (𝐴 ∈ ℝ ↔ ∃𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) | |
2 | df-rex 2454 | . . 3 ⊢ (∃𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴 ↔ ∃𝑥(𝑥 ∈ R ∧ 〈𝑥, 0R〉 = 𝐴)) | |
3 | 1, 2 | bitri 183 | . 2 ⊢ (𝐴 ∈ ℝ ↔ ∃𝑥(𝑥 ∈ R ∧ 〈𝑥, 0R〉 = 𝐴)) |
4 | id 19 | . . . 4 ⊢ (〈𝑥, 0R〉 = 𝐴 → 〈𝑥, 0R〉 = 𝐴) | |
5 | 4, 4 | breq12d 4002 | . . 3 ⊢ (〈𝑥, 0R〉 = 𝐴 → (〈𝑥, 0R〉 <ℝ 〈𝑥, 0R〉 ↔ 𝐴 <ℝ 𝐴)) |
6 | 5 | notbid 662 | . 2 ⊢ (〈𝑥, 0R〉 = 𝐴 → (¬ 〈𝑥, 0R〉 <ℝ 〈𝑥, 0R〉 ↔ ¬ 𝐴 <ℝ 𝐴)) |
7 | ltsosr 7726 | . . . . 5 ⊢ <R Or R | |
8 | ltrelsr 7700 | . . . . 5 ⊢ <R ⊆ (R × R) | |
9 | 7, 8 | soirri 5005 | . . . 4 ⊢ ¬ 𝑥 <R 𝑥 |
10 | ltresr 7801 | . . . 4 ⊢ (〈𝑥, 0R〉 <ℝ 〈𝑥, 0R〉 ↔ 𝑥 <R 𝑥) | |
11 | 9, 10 | mtbir 666 | . . 3 ⊢ ¬ 〈𝑥, 0R〉 <ℝ 〈𝑥, 0R〉 |
12 | 11 | a1i 9 | . 2 ⊢ (𝑥 ∈ R → ¬ 〈𝑥, 0R〉 <ℝ 〈𝑥, 0R〉) |
13 | 3, 6, 12 | gencl 2762 | 1 ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 <ℝ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 = wceq 1348 ∃wex 1485 ∈ wcel 2141 ∃wrex 2449 〈cop 3586 class class class wbr 3989 Rcnr 7259 0Rc0r 7260 <R cltr 7265 ℝcr 7773 <ℝ cltrr 7778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-eprel 4274 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-1o 6395 df-2o 6396 df-oadd 6399 df-omul 6400 df-er 6513 df-ec 6515 df-qs 6519 df-ni 7266 df-pli 7267 df-mi 7268 df-lti 7269 df-plpq 7306 df-mpq 7307 df-enq 7309 df-nqqs 7310 df-plqqs 7311 df-mqqs 7312 df-1nqqs 7313 df-rq 7314 df-ltnqqs 7315 df-enq0 7386 df-nq0 7387 df-0nq0 7388 df-plq0 7389 df-mq0 7390 df-inp 7428 df-i1p 7429 df-iplp 7430 df-iltp 7432 df-enr 7688 df-nr 7689 df-ltr 7692 df-0r 7693 df-r 7784 df-lt 7787 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |