ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ceqsralv GIF version

Theorem ceqsralv 2802
Description: Restricted quantifier version of ceqsalv 2801. (Contributed by NM, 21-Jun-2013.)
Hypothesis
Ref Expression
ceqsralv.2 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
ceqsralv (𝐴𝐵 → (∀𝑥𝐵 (𝑥 = 𝐴𝜑) ↔ 𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ceqsralv
StepHypRef Expression
1 nfv 1550 . 2 𝑥𝜓
2 ceqsralv.2 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
32ax-gen 1471 . 2 𝑥(𝑥 = 𝐴 → (𝜑𝜓))
4 ceqsralt 2798 . 2 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝐵) → (∀𝑥𝐵 (𝑥 = 𝐴𝜑) ↔ 𝜓))
51, 3, 4mp3an12 1339 1 (𝐴𝐵 → (∀𝑥𝐵 (𝑥 = 𝐴𝜑) ↔ 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1370   = wceq 1372  wnf 1482  wcel 2175  wral 2483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-3an 982  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-ral 2488  df-v 2773
This theorem is referenced by:  eqreu  2964  sqrt2irr  12426
  Copyright terms: Public domain W3C validator