ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  euf GIF version

Theorem euf 2019
Description: A version of the existential uniqueness definition with a hypothesis instead of a distinct variable condition. (Contributed by NM, 12-Aug-1993.)
Hypothesis
Ref Expression
euf.1 (𝜑 → ∀𝑦𝜑)
Assertion
Ref Expression
euf (∃!𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem euf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-eu 2017 . 2 (∃!𝑥𝜑 ↔ ∃𝑧𝑥(𝜑𝑥 = 𝑧))
2 euf.1 . . . . 5 (𝜑 → ∀𝑦𝜑)
3 ax-17 1514 . . . . 5 (𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧)
42, 3hbbi 1536 . . . 4 ((𝜑𝑥 = 𝑧) → ∀𝑦(𝜑𝑥 = 𝑧))
54hbal 1465 . . 3 (∀𝑥(𝜑𝑥 = 𝑧) → ∀𝑦𝑥(𝜑𝑥 = 𝑧))
6 ax-17 1514 . . 3 (∀𝑥(𝜑𝑥 = 𝑦) → ∀𝑧𝑥(𝜑𝑥 = 𝑦))
7 equequ2 1701 . . . . 5 (𝑧 = 𝑦 → (𝑥 = 𝑧𝑥 = 𝑦))
87bibi2d 231 . . . 4 (𝑧 = 𝑦 → ((𝜑𝑥 = 𝑧) ↔ (𝜑𝑥 = 𝑦)))
98albidv 1812 . . 3 (𝑧 = 𝑦 → (∀𝑥(𝜑𝑥 = 𝑧) ↔ ∀𝑥(𝜑𝑥 = 𝑦)))
105, 6, 9cbvexh 1743 . 2 (∃𝑧𝑥(𝜑𝑥 = 𝑧) ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
111, 10bitri 183 1 (∃!𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wal 1341  wex 1480  ∃!weu 2014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-eu 2017
This theorem is referenced by:  eu1  2039  eumo0  2045
  Copyright terms: Public domain W3C validator