![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 19.12 | GIF version |
Description: Theorem 19.12 of [Margaris] p. 89. Assuming the converse is a mistake sometimes made by beginners! (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
19.12 | ⊢ (∃𝑥∀𝑦𝜑 → ∀𝑦∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hba1 1485 | . . 3 ⊢ (∀𝑦𝜑 → ∀𝑦∀𝑦𝜑) | |
2 | 1 | hbex 1579 | . 2 ⊢ (∃𝑥∀𝑦𝜑 → ∀𝑦∃𝑥∀𝑦𝜑) |
3 | ax-4 1452 | . . 3 ⊢ (∀𝑦𝜑 → 𝜑) | |
4 | 3 | eximi 1543 | . 2 ⊢ (∃𝑥∀𝑦𝜑 → ∃𝑥𝜑) |
5 | 2, 4 | alrimih 1410 | 1 ⊢ (∃𝑥∀𝑦𝜑 → ∀𝑦∃𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1294 ∃wex 1433 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-4 1452 ax-ial 1479 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: hbexd 1636 nfexd 1698 cbvexdh 1856 |
Copyright terms: Public domain | W3C validator |