| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 19.12 | GIF version | ||
| Description: Theorem 19.12 of [Margaris] p. 89. Assuming the converse is a mistake sometimes made by beginners! (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| 19.12 | ⊢ (∃𝑥∀𝑦𝜑 → ∀𝑦∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hba1 1554 | . . 3 ⊢ (∀𝑦𝜑 → ∀𝑦∀𝑦𝜑) | |
| 2 | 1 | hbex 1650 | . 2 ⊢ (∃𝑥∀𝑦𝜑 → ∀𝑦∃𝑥∀𝑦𝜑) |
| 3 | ax-4 1524 | . . 3 ⊢ (∀𝑦𝜑 → 𝜑) | |
| 4 | 3 | eximi 1614 | . 2 ⊢ (∃𝑥∀𝑦𝜑 → ∃𝑥𝜑) |
| 5 | 2, 4 | alrimih 1483 | 1 ⊢ (∃𝑥∀𝑦𝜑 → ∀𝑦∃𝑥𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1362 ∃wex 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: hbexd 1708 nfexd 1775 cbvexdh 1941 |
| Copyright terms: Public domain | W3C validator |