ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.12 GIF version

Theorem 19.12 1653
Description: Theorem 19.12 of [Margaris] p. 89. Assuming the converse is a mistake sometimes made by beginners! (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
19.12 (∃𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)

Proof of Theorem 19.12
StepHypRef Expression
1 hba1 1528 . . 3 (∀𝑦𝜑 → ∀𝑦𝑦𝜑)
21hbex 1624 . 2 (∃𝑥𝑦𝜑 → ∀𝑦𝑥𝑦𝜑)
3 ax-4 1498 . . 3 (∀𝑦𝜑𝜑)
43eximi 1588 . 2 (∃𝑥𝑦𝜑 → ∃𝑥𝜑)
52, 4alrimih 1457 1 (∃𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1341  wex 1480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-ial 1522
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  hbexd  1682  nfexd  1749  cbvexdh  1914
  Copyright terms: Public domain W3C validator