Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfim1 | GIF version |
Description: A closed form of nfim 1565. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 2-Jan-2018.) |
Ref | Expression |
---|---|
nfim1.1 | ⊢ Ⅎ𝑥𝜑 |
nfim1.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfim1 | ⊢ Ⅎ𝑥(𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfim1.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nfri 1512 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) |
3 | nfim1.2 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
4 | 3 | nfrd 1513 | . . 3 ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) |
5 | 2, 4 | hbim1 1563 | . 2 ⊢ ((𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓)) |
6 | 5 | nfi 1455 | 1 ⊢ Ⅎ𝑥(𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Ⅎwnf 1453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-4 1503 ax-ial 1527 ax-i5r 1528 |
This theorem depends on definitions: df-bi 116 df-nf 1454 |
This theorem is referenced by: nfim 1565 cbv1 1738 cbv1v 1740 hbsbd 1975 nfabdw 2331 |
Copyright terms: Public domain | W3C validator |