| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nfim1 | GIF version | ||
| Description: A closed form of nfim 1586. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 2-Jan-2018.) | 
| Ref | Expression | 
|---|---|
| nfim1.1 | ⊢ Ⅎ𝑥𝜑 | 
| nfim1.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) | 
| Ref | Expression | 
|---|---|
| nfim1 | ⊢ Ⅎ𝑥(𝜑 → 𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfim1.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nfri 1533 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | 
| 3 | nfim1.2 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 4 | 3 | nfrd 1534 | . . 3 ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) | 
| 5 | 2, 4 | hbim1 1584 | . 2 ⊢ ((𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓)) | 
| 6 | 5 | nfi 1476 | 1 ⊢ Ⅎ𝑥(𝜑 → 𝜓) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 Ⅎwnf 1474 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-ial 1548 ax-i5r 1549 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 | 
| This theorem is referenced by: nfim 1586 cbv1 1759 cbv1v 1761 hbsbd 2001 nfabdw 2358 | 
| Copyright terms: Public domain | W3C validator |