| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfim1 | GIF version | ||
| Description: A closed form of nfim 1618. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 2-Jan-2018.) |
| Ref | Expression |
|---|---|
| nfim1.1 | ⊢ Ⅎ𝑥𝜑 |
| nfim1.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Ref | Expression |
|---|---|
| nfim1 | ⊢ Ⅎ𝑥(𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfim1.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nfri 1565 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) |
| 3 | nfim1.2 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 4 | 3 | nfrd 1566 | . . 3 ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) |
| 5 | 2, 4 | hbim1 1616 | . 2 ⊢ ((𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓)) |
| 6 | 5 | nfi 1508 | 1 ⊢ Ⅎ𝑥(𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 Ⅎwnf 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-ial 1580 ax-i5r 1581 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 |
| This theorem is referenced by: nfim 1618 cbv1 1791 cbv1v 1793 hbsbd 2033 nfabdw 2391 |
| Copyright terms: Public domain | W3C validator |