| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > euor2 | GIF version | ||
| Description: Introduce or eliminate a disjunct in a unique existential quantifier. (Contributed by NM, 21-Oct-2005.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
| Ref | Expression |
|---|---|
| euor2 | ⊢ (¬ ∃𝑥𝜑 → (∃!𝑥(𝜑 ∨ 𝜓) ↔ ∃!𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbe1 1519 | . . 3 ⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) | |
| 2 | 1 | hbn 1678 | . 2 ⊢ (¬ ∃𝑥𝜑 → ∀𝑥 ¬ ∃𝑥𝜑) |
| 3 | 19.8a 1614 | . . . 4 ⊢ (𝜑 → ∃𝑥𝜑) | |
| 4 | 3 | con3i 633 | . . 3 ⊢ (¬ ∃𝑥𝜑 → ¬ 𝜑) |
| 5 | orel1 727 | . . . 4 ⊢ (¬ 𝜑 → ((𝜑 ∨ 𝜓) → 𝜓)) | |
| 6 | olc 713 | . . . 4 ⊢ (𝜓 → (𝜑 ∨ 𝜓)) | |
| 7 | 5, 6 | impbid1 142 | . . 3 ⊢ (¬ 𝜑 → ((𝜑 ∨ 𝜓) ↔ 𝜓)) |
| 8 | 4, 7 | syl 14 | . 2 ⊢ (¬ ∃𝑥𝜑 → ((𝜑 ∨ 𝜓) ↔ 𝜓)) |
| 9 | 2, 8 | eubidh 2061 | 1 ⊢ (¬ ∃𝑥𝜑 → (∃!𝑥(𝜑 ∨ 𝜓) ↔ ∃!𝑥𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∨ wo 710 ∃wex 1516 ∃!weu 2055 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-eu 2058 |
| This theorem is referenced by: reuun2 3460 |
| Copyright terms: Public domain | W3C validator |