| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > sbn | GIF version | ||
| Description: Negation inside and outside of substitution are equivalent. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 3-Feb-2018.) | 
| Ref | Expression | 
|---|---|
| sbn | ⊢ ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sbnv 1903 | . . . 4 ⊢ ([𝑧 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑧 / 𝑥]𝜑) | |
| 2 | 1 | sbbii 1779 | . . 3 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥] ¬ 𝜑 ↔ [𝑦 / 𝑧] ¬ [𝑧 / 𝑥]𝜑) | 
| 3 | sbnv 1903 | . . 3 ⊢ ([𝑦 / 𝑧] ¬ [𝑧 / 𝑥]𝜑 ↔ ¬ [𝑦 / 𝑧][𝑧 / 𝑥]𝜑) | |
| 4 | 2, 3 | bitri 184 | . 2 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑧][𝑧 / 𝑥]𝜑) | 
| 5 | ax-17 1540 | . . . 4 ⊢ (𝜑 → ∀𝑧𝜑) | |
| 6 | 5 | hbn 1668 | . . 3 ⊢ (¬ 𝜑 → ∀𝑧 ¬ 𝜑) | 
| 7 | 6 | sbco2vh 1964 | . 2 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥] ¬ 𝜑 ↔ [𝑦 / 𝑥] ¬ 𝜑) | 
| 8 | 5 | sbco2vh 1964 | . . 3 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) | 
| 9 | 8 | notbii 669 | . 2 ⊢ (¬ [𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑) | 
| 10 | 4, 7, 9 | 3bitr3i 210 | 1 ⊢ ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 ↔ wb 105 [wsb 1776 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 | 
| This theorem is referenced by: sbcng 3030 difab 3432 rabeq0 3480 abeq0 3481 ssfirab 6997 | 
| Copyright terms: Public domain | W3C validator |