ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbn GIF version

Theorem sbn 1971
Description: Negation inside and outside of substitution are equivalent. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 3-Feb-2018.)
Assertion
Ref Expression
sbn ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑)

Proof of Theorem sbn
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sbnv 1903 . . . 4 ([𝑧 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑧 / 𝑥]𝜑)
21sbbii 1779 . . 3 ([𝑦 / 𝑧][𝑧 / 𝑥] ¬ 𝜑 ↔ [𝑦 / 𝑧] ¬ [𝑧 / 𝑥]𝜑)
3 sbnv 1903 . . 3 ([𝑦 / 𝑧] ¬ [𝑧 / 𝑥]𝜑 ↔ ¬ [𝑦 / 𝑧][𝑧 / 𝑥]𝜑)
42, 3bitri 184 . 2 ([𝑦 / 𝑧][𝑧 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑧][𝑧 / 𝑥]𝜑)
5 ax-17 1540 . . . 4 (𝜑 → ∀𝑧𝜑)
65hbn 1668 . . 3 𝜑 → ∀𝑧 ¬ 𝜑)
76sbco2vh 1964 . 2 ([𝑦 / 𝑧][𝑧 / 𝑥] ¬ 𝜑 ↔ [𝑦 / 𝑥] ¬ 𝜑)
85sbco2vh 1964 . . 3 ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
98notbii 669 . 2 (¬ [𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑)
104, 7, 93bitr3i 210 1 ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 105  [wsb 1776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777
This theorem is referenced by:  sbcng  3030  difab  3432  rabeq0  3480  abeq0  3481  ssfirab  6997
  Copyright terms: Public domain W3C validator