ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbnaes GIF version

Theorem hbnaes 1716
Description: Rule that applies hbnae 1714 to antecedent. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
hbnalequs.1 (∀𝑧 ¬ ∀𝑥 𝑥 = 𝑦𝜑)
Assertion
Ref Expression
hbnaes (¬ ∀𝑥 𝑥 = 𝑦𝜑)

Proof of Theorem hbnaes
StepHypRef Expression
1 hbnae 1714 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑧 ¬ ∀𝑥 𝑥 = 𝑦)
2 hbnalequs.1 . 2 (∀𝑧 ¬ ∀𝑥 𝑥 = 𝑦𝜑)
31, 2syl 14 1 (¬ ∀𝑥 𝑥 = 𝑦𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wal 1346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-fal 1354
This theorem is referenced by:  sbal2  2013
  Copyright terms: Public domain W3C validator