| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hbnaes | GIF version | ||
| Description: Rule that applies hbnae 1735 to antecedent. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| hbnalequs.1 | ⊢ (∀𝑧 ¬ ∀𝑥 𝑥 = 𝑦 → 𝜑) |
| Ref | Expression |
|---|---|
| hbnaes | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbnae 1735 | . 2 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑧 ¬ ∀𝑥 𝑥 = 𝑦) | |
| 2 | hbnalequs.1 | . 2 ⊢ (∀𝑧 ¬ ∀𝑥 𝑥 = 𝑦 → 𝜑) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1362 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 |
| This theorem is referenced by: sbal2 2039 |
| Copyright terms: Public domain | W3C validator |