Proof of Theorem sbal2
| Step | Hyp | Ref
| Expression |
| 1 | | hbnae 1735 |
. . . 4
⊢ (¬
∀𝑥 𝑥 = 𝑦 → ∀𝑦 ¬ ∀𝑥 𝑥 = 𝑦) |
| 2 | | dveeq1 2038 |
. . . . . . 7
⊢ (¬
∀𝑥 𝑥 = 𝑦 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧)) |
| 3 | 2 | alimi 1469 |
. . . . . 6
⊢
(∀𝑥 ¬
∀𝑥 𝑥 = 𝑦 → ∀𝑥(𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧)) |
| 4 | 3 | hbnaes 1737 |
. . . . 5
⊢ (¬
∀𝑥 𝑥 = 𝑦 → ∀𝑥(𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧)) |
| 5 | | 19.21ht 1595 |
. . . . 5
⊢
(∀𝑥(𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧) → (∀𝑥(𝑦 = 𝑧 → 𝜑) ↔ (𝑦 = 𝑧 → ∀𝑥𝜑))) |
| 6 | 4, 5 | syl 14 |
. . . 4
⊢ (¬
∀𝑥 𝑥 = 𝑦 → (∀𝑥(𝑦 = 𝑧 → 𝜑) ↔ (𝑦 = 𝑧 → ∀𝑥𝜑))) |
| 7 | 1, 6 | albidh 1494 |
. . 3
⊢ (¬
∀𝑥 𝑥 = 𝑦 → (∀𝑦∀𝑥(𝑦 = 𝑧 → 𝜑) ↔ ∀𝑦(𝑦 = 𝑧 → ∀𝑥𝜑))) |
| 8 | | alcom 1492 |
. . 3
⊢
(∀𝑦∀𝑥(𝑦 = 𝑧 → 𝜑) ↔ ∀𝑥∀𝑦(𝑦 = 𝑧 → 𝜑)) |
| 9 | 7, 8 | bitr3di 195 |
. 2
⊢ (¬
∀𝑥 𝑥 = 𝑦 → (∀𝑦(𝑦 = 𝑧 → ∀𝑥𝜑) ↔ ∀𝑥∀𝑦(𝑦 = 𝑧 → 𝜑))) |
| 10 | | sb6 1901 |
. 2
⊢ ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑦(𝑦 = 𝑧 → ∀𝑥𝜑)) |
| 11 | | sb6 1901 |
. . 3
⊢ ([𝑧 / 𝑦]𝜑 ↔ ∀𝑦(𝑦 = 𝑧 → 𝜑)) |
| 12 | 11 | albii 1484 |
. 2
⊢
(∀𝑥[𝑧 / 𝑦]𝜑 ↔ ∀𝑥∀𝑦(𝑦 = 𝑧 → 𝜑)) |
| 13 | 9, 10, 12 | 3bitr4g 223 |
1
⊢ (¬
∀𝑥 𝑥 = 𝑦 → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑)) |