ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbal2 GIF version

Theorem sbal2 2013
Description: Move quantifier in and out of substitution. (Contributed by NM, 2-Jan-2002.)
Assertion
Ref Expression
sbal2 (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑))
Distinct variable groups:   𝑦,𝑧   𝑥,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem sbal2
StepHypRef Expression
1 hbnae 1714 . . . 4 (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑦 ¬ ∀𝑥 𝑥 = 𝑦)
2 dveeq1 2012 . . . . . . 7 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧))
32alimi 1448 . . . . . 6 (∀𝑥 ¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑥(𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧))
43hbnaes 1716 . . . . 5 (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑥(𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧))
5 19.21ht 1574 . . . . 5 (∀𝑥(𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧) → (∀𝑥(𝑦 = 𝑧𝜑) ↔ (𝑦 = 𝑧 → ∀𝑥𝜑)))
64, 5syl 14 . . . 4 (¬ ∀𝑥 𝑥 = 𝑦 → (∀𝑥(𝑦 = 𝑧𝜑) ↔ (𝑦 = 𝑧 → ∀𝑥𝜑)))
71, 6albidh 1473 . . 3 (¬ ∀𝑥 𝑥 = 𝑦 → (∀𝑦𝑥(𝑦 = 𝑧𝜑) ↔ ∀𝑦(𝑦 = 𝑧 → ∀𝑥𝜑)))
8 alcom 1471 . . 3 (∀𝑦𝑥(𝑦 = 𝑧𝜑) ↔ ∀𝑥𝑦(𝑦 = 𝑧𝜑))
97, 8bitr3di 194 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → (∀𝑦(𝑦 = 𝑧 → ∀𝑥𝜑) ↔ ∀𝑥𝑦(𝑦 = 𝑧𝜑)))
10 sb6 1879 . 2 ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑦(𝑦 = 𝑧 → ∀𝑥𝜑))
11 sb6 1879 . . 3 ([𝑧 / 𝑦]𝜑 ↔ ∀𝑦(𝑦 = 𝑧𝜑))
1211albii 1463 . 2 (∀𝑥[𝑧 / 𝑦]𝜑 ↔ ∀𝑥𝑦(𝑦 = 𝑧𝜑))
139, 10, 123bitr4g 222 1 (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 104  wal 1346  [wsb 1755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator