Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbal2 | GIF version |
Description: Move quantifier in and out of substitution. (Contributed by NM, 2-Jan-2002.) |
Ref | Expression |
---|---|
sbal2 | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbnae 1714 | . . . 4 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑦 ¬ ∀𝑥 𝑥 = 𝑦) | |
2 | dveeq1 2012 | . . . . . . 7 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧)) | |
3 | 2 | alimi 1448 | . . . . . 6 ⊢ (∀𝑥 ¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑥(𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧)) |
4 | 3 | hbnaes 1716 | . . . . 5 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑥(𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧)) |
5 | 19.21ht 1574 | . . . . 5 ⊢ (∀𝑥(𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧) → (∀𝑥(𝑦 = 𝑧 → 𝜑) ↔ (𝑦 = 𝑧 → ∀𝑥𝜑))) | |
6 | 4, 5 | syl 14 | . . . 4 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (∀𝑥(𝑦 = 𝑧 → 𝜑) ↔ (𝑦 = 𝑧 → ∀𝑥𝜑))) |
7 | 1, 6 | albidh 1473 | . . 3 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (∀𝑦∀𝑥(𝑦 = 𝑧 → 𝜑) ↔ ∀𝑦(𝑦 = 𝑧 → ∀𝑥𝜑))) |
8 | alcom 1471 | . . 3 ⊢ (∀𝑦∀𝑥(𝑦 = 𝑧 → 𝜑) ↔ ∀𝑥∀𝑦(𝑦 = 𝑧 → 𝜑)) | |
9 | 7, 8 | bitr3di 194 | . 2 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (∀𝑦(𝑦 = 𝑧 → ∀𝑥𝜑) ↔ ∀𝑥∀𝑦(𝑦 = 𝑧 → 𝜑))) |
10 | sb6 1879 | . 2 ⊢ ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑦(𝑦 = 𝑧 → ∀𝑥𝜑)) | |
11 | sb6 1879 | . . 3 ⊢ ([𝑧 / 𝑦]𝜑 ↔ ∀𝑦(𝑦 = 𝑧 → 𝜑)) | |
12 | 11 | albii 1463 | . 2 ⊢ (∀𝑥[𝑧 / 𝑦]𝜑 ↔ ∀𝑥∀𝑦(𝑦 = 𝑧 → 𝜑)) |
13 | 9, 10, 12 | 3bitr4g 222 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 104 ∀wal 1346 [wsb 1755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |