ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfnae GIF version

Theorem nfnae 1702
Description: All variables are effectively bound in a distinct variable specifier. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
nfnae 𝑧 ¬ ∀𝑥 𝑥 = 𝑦

Proof of Theorem nfnae
StepHypRef Expression
1 nfae 1699 . 2 𝑧𝑥 𝑥 = 𝑦
21nfn 1638 1 𝑧 ¬ ∀𝑥 𝑥 = 𝑦
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wal 1333  wnf 1440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-fal 1341  df-nf 1441
This theorem is referenced by:  sbequ6  1763  dvelimfv  1991  nfsb4t  1994
  Copyright terms: Public domain W3C validator