ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfnae GIF version

Theorem nfnae 1657
Description: All variables are effectively bound in a distinct variable specifier. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
nfnae 𝑧 ¬ ∀𝑥 𝑥 = 𝑦

Proof of Theorem nfnae
StepHypRef Expression
1 nfae 1654 . 2 𝑧𝑥 𝑥 = 𝑦
21nfn 1593 1 𝑧 ¬ ∀𝑥 𝑥 = 𝑦
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wal 1287  wnf 1394
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-fal 1295  df-nf 1395
This theorem is referenced by:  sbequ6  1713  dvelimfv  1935  nfsb4t  1938
  Copyright terms: Public domain W3C validator