| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpss12 | GIF version | ||
| Description: Subset theorem for cross product. Generalization of Theorem 101 of [Suppes] p. 52. (Contributed by NM, 26-Aug-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| xpss12 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3218 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 2 | ssel 3218 | . . . 4 ⊢ (𝐶 ⊆ 𝐷 → (𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷)) | |
| 3 | 1, 2 | im2anan9 600 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) → (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷))) |
| 4 | 3 | ssopab2dv 4366 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)} ⊆ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷)}) |
| 5 | df-xp 4722 | . 2 ⊢ (𝐴 × 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)} | |
| 6 | df-xp 4722 | . 2 ⊢ (𝐵 × 𝐷) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷)} | |
| 7 | 4, 5, 6 | 3sstr4g 3267 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2200 ⊆ wss 3197 {copab 4143 × cxp 4714 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-in 3203 df-ss 3210 df-opab 4145 df-xp 4722 |
| This theorem is referenced by: xpss 4824 xpss1 4826 xpss2 4827 djussxp 4864 ssxpbm 5160 ssrnres 5167 cossxp 5247 cossxp2 5248 cocnvss 5250 relrelss 5251 fssxp 5487 oprabss 6081 pmss12g 6812 caserel 7242 casef 7243 dmaddpi 7500 dmmulpi 7501 rexpssxrxp 8179 ltrelxr 8195 dfz2 9507 phimullem 12733 znleval 14602 txuni2 14915 txbas 14917 neitx 14927 txcnp 14930 cnmpt2res 14956 psmetres2 14992 xmetres2 15038 metres2 15040 xmetresbl 15099 xmettx 15169 qtopbasss 15180 tgqioo 15214 resubmet 15215 limccnp2lem 15335 limccnp2cntop 15336 mpodvdsmulf1o 15649 fsumdvdsmul 15650 |
| Copyright terms: Public domain | W3C validator |