| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpss12 | GIF version | ||
| Description: Subset theorem for cross product. Generalization of Theorem 101 of [Suppes] p. 52. (Contributed by NM, 26-Aug-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| xpss12 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3189 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 2 | ssel 3189 | . . . 4 ⊢ (𝐶 ⊆ 𝐷 → (𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷)) | |
| 3 | 1, 2 | im2anan9 598 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) → (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷))) |
| 4 | 3 | ssopab2dv 4330 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)} ⊆ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷)}) |
| 5 | df-xp 4686 | . 2 ⊢ (𝐴 × 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)} | |
| 6 | df-xp 4686 | . 2 ⊢ (𝐵 × 𝐷) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷)} | |
| 7 | 4, 5, 6 | 3sstr4g 3238 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2177 ⊆ wss 3168 {copab 4109 × cxp 4678 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-in 3174 df-ss 3181 df-opab 4111 df-xp 4686 |
| This theorem is referenced by: xpss 4788 xpss1 4790 xpss2 4791 djussxp 4828 ssxpbm 5124 ssrnres 5131 cossxp 5211 cossxp2 5212 cocnvss 5214 relrelss 5215 fssxp 5450 oprabss 6041 pmss12g 6772 caserel 7201 casef 7202 dmaddpi 7451 dmmulpi 7452 rexpssxrxp 8130 ltrelxr 8146 dfz2 9458 phimullem 12597 znleval 14465 txuni2 14778 txbas 14780 neitx 14790 txcnp 14793 cnmpt2res 14819 psmetres2 14855 xmetres2 14901 metres2 14903 xmetresbl 14962 xmettx 15032 qtopbasss 15043 tgqioo 15077 resubmet 15078 limccnp2lem 15198 limccnp2cntop 15199 mpodvdsmulf1o 15512 fsumdvdsmul 15513 |
| Copyright terms: Public domain | W3C validator |