ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpss12 GIF version

Theorem xpss12 4787
Description: Subset theorem for cross product. Generalization of Theorem 101 of [Suppes] p. 52. (Contributed by NM, 26-Aug-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
xpss12 ((𝐴𝐵𝐶𝐷) → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐷))

Proof of Theorem xpss12
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3189 . . . 4 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
2 ssel 3189 . . . 4 (𝐶𝐷 → (𝑦𝐶𝑦𝐷))
31, 2im2anan9 598 . . 3 ((𝐴𝐵𝐶𝐷) → ((𝑥𝐴𝑦𝐶) → (𝑥𝐵𝑦𝐷)))
43ssopab2dv 4330 . 2 ((𝐴𝐵𝐶𝐷) → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐶)} ⊆ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐷)})
5 df-xp 4686 . 2 (𝐴 × 𝐶) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐶)}
6 df-xp 4686 . 2 (𝐵 × 𝐷) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐷)}
74, 5, 63sstr4g 3238 1 ((𝐴𝐵𝐶𝐷) → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2177  wss 3168  {copab 4109   × cxp 4678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-in 3174  df-ss 3181  df-opab 4111  df-xp 4686
This theorem is referenced by:  xpss  4788  xpss1  4790  xpss2  4791  djussxp  4828  ssxpbm  5124  ssrnres  5131  cossxp  5211  cossxp2  5212  cocnvss  5214  relrelss  5215  fssxp  5450  oprabss  6041  pmss12g  6772  caserel  7201  casef  7202  dmaddpi  7451  dmmulpi  7452  rexpssxrxp  8130  ltrelxr  8146  dfz2  9458  phimullem  12597  znleval  14465  txuni2  14778  txbas  14780  neitx  14790  txcnp  14793  cnmpt2res  14819  psmetres2  14855  xmetres2  14901  metres2  14903  xmetresbl  14962  xmettx  15032  qtopbasss  15043  tgqioo  15077  resubmet  15078  limccnp2lem  15198  limccnp2cntop  15199  mpodvdsmulf1o  15512  fsumdvdsmul  15513
  Copyright terms: Public domain W3C validator