ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpss12 GIF version

Theorem xpss12 4823
Description: Subset theorem for cross product. Generalization of Theorem 101 of [Suppes] p. 52. (Contributed by NM, 26-Aug-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
xpss12 ((𝐴𝐵𝐶𝐷) → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐷))

Proof of Theorem xpss12
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3218 . . . 4 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
2 ssel 3218 . . . 4 (𝐶𝐷 → (𝑦𝐶𝑦𝐷))
31, 2im2anan9 600 . . 3 ((𝐴𝐵𝐶𝐷) → ((𝑥𝐴𝑦𝐶) → (𝑥𝐵𝑦𝐷)))
43ssopab2dv 4366 . 2 ((𝐴𝐵𝐶𝐷) → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐶)} ⊆ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐷)})
5 df-xp 4722 . 2 (𝐴 × 𝐶) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐶)}
6 df-xp 4722 . 2 (𝐵 × 𝐷) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐷)}
74, 5, 63sstr4g 3267 1 ((𝐴𝐵𝐶𝐷) → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2200  wss 3197  {copab 4143   × cxp 4714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-in 3203  df-ss 3210  df-opab 4145  df-xp 4722
This theorem is referenced by:  xpss  4824  xpss1  4826  xpss2  4827  djussxp  4864  ssxpbm  5160  ssrnres  5167  cossxp  5247  cossxp2  5248  cocnvss  5250  relrelss  5251  fssxp  5487  oprabss  6081  pmss12g  6812  caserel  7242  casef  7243  dmaddpi  7500  dmmulpi  7501  rexpssxrxp  8179  ltrelxr  8195  dfz2  9507  phimullem  12733  znleval  14602  txuni2  14915  txbas  14917  neitx  14927  txcnp  14930  cnmpt2res  14956  psmetres2  14992  xmetres2  15038  metres2  15040  xmetresbl  15099  xmettx  15169  qtopbasss  15180  tgqioo  15214  resubmet  15215  limccnp2lem  15335  limccnp2cntop  15336  mpodvdsmulf1o  15649  fsumdvdsmul  15650
  Copyright terms: Public domain W3C validator