![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xpss12 | GIF version |
Description: Subset theorem for cross product. Generalization of Theorem 101 of [Suppes] p. 52. (Contributed by NM, 26-Aug-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
xpss12 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3151 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | ssel 3151 | . . . 4 ⊢ (𝐶 ⊆ 𝐷 → (𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷)) | |
3 | 1, 2 | im2anan9 598 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) → (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷))) |
4 | 3 | ssopab2dv 4280 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)} ⊆ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷)}) |
5 | df-xp 4634 | . 2 ⊢ (𝐴 × 𝐶) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)} | |
6 | df-xp 4634 | . 2 ⊢ (𝐵 × 𝐷) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷)} | |
7 | 4, 5, 6 | 3sstr4g 3200 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2148 ⊆ wss 3131 {copab 4065 × cxp 4626 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-in 3137 df-ss 3144 df-opab 4067 df-xp 4634 |
This theorem is referenced by: xpss 4736 xpss1 4738 xpss2 4739 djussxp 4774 ssxpbm 5066 ssrnres 5073 cossxp 5153 cossxp2 5154 cocnvss 5156 relrelss 5157 fssxp 5385 oprabss 5963 pmss12g 6677 caserel 7088 casef 7089 dmaddpi 7326 dmmulpi 7327 rexpssxrxp 8004 ltrelxr 8020 dfz2 9327 phimullem 12227 txuni2 13795 txbas 13797 neitx 13807 txcnp 13810 cnmpt2res 13836 psmetres2 13872 xmetres2 13918 metres2 13920 xmetresbl 13979 xmettx 14049 qtopbasss 14060 tgqioo 14086 resubmet 14087 limccnp2lem 14184 limccnp2cntop 14185 |
Copyright terms: Public domain | W3C validator |