Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xpss12 | GIF version |
Description: Subset theorem for cross product. Generalization of Theorem 101 of [Suppes] p. 52. (Contributed by NM, 26-Aug-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
xpss12 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3136 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | ssel 3136 | . . . 4 ⊢ (𝐶 ⊆ 𝐷 → (𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷)) | |
3 | 1, 2 | im2anan9 588 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) → (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷))) |
4 | 3 | ssopab2dv 4256 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)} ⊆ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷)}) |
5 | df-xp 4610 | . 2 ⊢ (𝐴 × 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)} | |
6 | df-xp 4610 | . 2 ⊢ (𝐵 × 𝐷) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷)} | |
7 | 4, 5, 6 | 3sstr4g 3185 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2136 ⊆ wss 3116 {copab 4042 × cxp 4602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-in 3122 df-ss 3129 df-opab 4044 df-xp 4610 |
This theorem is referenced by: xpss 4712 xpss1 4714 xpss2 4715 djussxp 4749 ssxpbm 5039 ssrnres 5046 cossxp 5126 cossxp2 5127 cocnvss 5129 relrelss 5130 fssxp 5355 oprabss 5928 pmss12g 6641 caserel 7052 casef 7053 dmaddpi 7266 dmmulpi 7267 rexpssxrxp 7943 ltrelxr 7959 dfz2 9263 phimullem 12157 txuni2 12896 txbas 12898 neitx 12908 txcnp 12911 cnmpt2res 12937 psmetres2 12973 xmetres2 13019 metres2 13021 xmetresbl 13080 xmettx 13150 qtopbasss 13161 tgqioo 13187 resubmet 13188 limccnp2lem 13285 limccnp2cntop 13286 |
Copyright terms: Public domain | W3C validator |