ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpss12 GIF version

Theorem xpss12 4766
Description: Subset theorem for cross product. Generalization of Theorem 101 of [Suppes] p. 52. (Contributed by NM, 26-Aug-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
xpss12 ((𝐴𝐵𝐶𝐷) → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐷))

Proof of Theorem xpss12
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3173 . . . 4 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
2 ssel 3173 . . . 4 (𝐶𝐷 → (𝑦𝐶𝑦𝐷))
31, 2im2anan9 598 . . 3 ((𝐴𝐵𝐶𝐷) → ((𝑥𝐴𝑦𝐶) → (𝑥𝐵𝑦𝐷)))
43ssopab2dv 4309 . 2 ((𝐴𝐵𝐶𝐷) → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐶)} ⊆ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐷)})
5 df-xp 4665 . 2 (𝐴 × 𝐶) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐶)}
6 df-xp 4665 . 2 (𝐵 × 𝐷) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐷)}
74, 5, 63sstr4g 3222 1 ((𝐴𝐵𝐶𝐷) → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2164  wss 3153  {copab 4089   × cxp 4657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-in 3159  df-ss 3166  df-opab 4091  df-xp 4665
This theorem is referenced by:  xpss  4767  xpss1  4769  xpss2  4770  djussxp  4807  ssxpbm  5101  ssrnres  5108  cossxp  5188  cossxp2  5189  cocnvss  5191  relrelss  5192  fssxp  5421  oprabss  6004  pmss12g  6729  caserel  7146  casef  7147  dmaddpi  7385  dmmulpi  7386  rexpssxrxp  8064  ltrelxr  8080  dfz2  9389  phimullem  12363  znleval  14141  txuni2  14424  txbas  14426  neitx  14436  txcnp  14439  cnmpt2res  14465  psmetres2  14501  xmetres2  14547  metres2  14549  xmetresbl  14608  xmettx  14678  qtopbasss  14689  tgqioo  14715  resubmet  14716  limccnp2lem  14830  limccnp2cntop  14831
  Copyright terms: Public domain W3C validator