| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpss12 | GIF version | ||
| Description: Subset theorem for cross product. Generalization of Theorem 101 of [Suppes] p. 52. (Contributed by NM, 26-Aug-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| xpss12 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3218 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 2 | ssel 3218 | . . . 4 ⊢ (𝐶 ⊆ 𝐷 → (𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷)) | |
| 3 | 1, 2 | im2anan9 600 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) → (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷))) |
| 4 | 3 | ssopab2dv 4367 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)} ⊆ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷)}) |
| 5 | df-xp 4725 | . 2 ⊢ (𝐴 × 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)} | |
| 6 | df-xp 4725 | . 2 ⊢ (𝐵 × 𝐷) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷)} | |
| 7 | 4, 5, 6 | 3sstr4g 3267 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2200 ⊆ wss 3197 {copab 4144 × cxp 4717 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-in 3203 df-ss 3210 df-opab 4146 df-xp 4725 |
| This theorem is referenced by: xpss 4827 xpss1 4829 xpss2 4830 djussxp 4867 ssxpbm 5164 ssrnres 5171 cossxp 5251 cossxp2 5252 cocnvss 5254 relrelss 5255 fssxp 5493 oprabss 6096 pmss12g 6830 caserel 7262 casef 7263 dmaddpi 7520 dmmulpi 7521 rexpssxrxp 8199 ltrelxr 8215 dfz2 9527 phimullem 12755 znleval 14625 txuni2 14938 txbas 14940 neitx 14950 txcnp 14953 cnmpt2res 14979 psmetres2 15015 xmetres2 15061 metres2 15063 xmetresbl 15122 xmettx 15192 qtopbasss 15203 tgqioo 15237 resubmet 15238 limccnp2lem 15358 limccnp2cntop 15359 mpodvdsmulf1o 15672 fsumdvdsmul 15673 |
| Copyright terms: Public domain | W3C validator |