ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpss12 GIF version

Theorem xpss12 4826
Description: Subset theorem for cross product. Generalization of Theorem 101 of [Suppes] p. 52. (Contributed by NM, 26-Aug-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
xpss12 ((𝐴𝐵𝐶𝐷) → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐷))

Proof of Theorem xpss12
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3218 . . . 4 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
2 ssel 3218 . . . 4 (𝐶𝐷 → (𝑦𝐶𝑦𝐷))
31, 2im2anan9 600 . . 3 ((𝐴𝐵𝐶𝐷) → ((𝑥𝐴𝑦𝐶) → (𝑥𝐵𝑦𝐷)))
43ssopab2dv 4367 . 2 ((𝐴𝐵𝐶𝐷) → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐶)} ⊆ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐷)})
5 df-xp 4725 . 2 (𝐴 × 𝐶) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐶)}
6 df-xp 4725 . 2 (𝐵 × 𝐷) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐷)}
74, 5, 63sstr4g 3267 1 ((𝐴𝐵𝐶𝐷) → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2200  wss 3197  {copab 4144   × cxp 4717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-in 3203  df-ss 3210  df-opab 4146  df-xp 4725
This theorem is referenced by:  xpss  4827  xpss1  4829  xpss2  4830  djussxp  4867  ssxpbm  5164  ssrnres  5171  cossxp  5251  cossxp2  5252  cocnvss  5254  relrelss  5255  fssxp  5493  oprabss  6096  pmss12g  6830  caserel  7262  casef  7263  dmaddpi  7520  dmmulpi  7521  rexpssxrxp  8199  ltrelxr  8215  dfz2  9527  phimullem  12755  znleval  14625  txuni2  14938  txbas  14940  neitx  14950  txcnp  14953  cnmpt2res  14979  psmetres2  15015  xmetres2  15061  metres2  15063  xmetresbl  15122  xmettx  15192  qtopbasss  15203  tgqioo  15237  resubmet  15238  limccnp2lem  15358  limccnp2cntop  15359  mpodvdsmulf1o  15672  fsumdvdsmul  15673
  Copyright terms: Public domain W3C validator