ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1oun GIF version

Theorem f1oun 5493
Description: The union of two one-to-one onto functions with disjoint domains and ranges. (Contributed by NM, 26-Mar-1998.)
Assertion
Ref Expression
f1oun (((𝐹:𝐴1-1-onto𝐵𝐺:𝐶1-1-onto𝐷) ∧ ((𝐴𝐶) = ∅ ∧ (𝐵𝐷) = ∅)) → (𝐹𝐺):(𝐴𝐶)–1-1-onto→(𝐵𝐷))

Proof of Theorem f1oun
StepHypRef Expression
1 dff1o4 5481 . . . 4 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹 Fn 𝐴𝐹 Fn 𝐵))
2 dff1o4 5481 . . . 4 (𝐺:𝐶1-1-onto𝐷 ↔ (𝐺 Fn 𝐶𝐺 Fn 𝐷))
3 fnun 5334 . . . . . . 7 (((𝐹 Fn 𝐴𝐺 Fn 𝐶) ∧ (𝐴𝐶) = ∅) → (𝐹𝐺) Fn (𝐴𝐶))
43ex 115 . . . . . 6 ((𝐹 Fn 𝐴𝐺 Fn 𝐶) → ((𝐴𝐶) = ∅ → (𝐹𝐺) Fn (𝐴𝐶)))
5 fnun 5334 . . . . . . . 8 (((𝐹 Fn 𝐵𝐺 Fn 𝐷) ∧ (𝐵𝐷) = ∅) → (𝐹𝐺) Fn (𝐵𝐷))
6 cnvun 5046 . . . . . . . . 9 (𝐹𝐺) = (𝐹𝐺)
76fneq1i 5322 . . . . . . . 8 ((𝐹𝐺) Fn (𝐵𝐷) ↔ (𝐹𝐺) Fn (𝐵𝐷))
85, 7sylibr 134 . . . . . . 7 (((𝐹 Fn 𝐵𝐺 Fn 𝐷) ∧ (𝐵𝐷) = ∅) → (𝐹𝐺) Fn (𝐵𝐷))
98ex 115 . . . . . 6 ((𝐹 Fn 𝐵𝐺 Fn 𝐷) → ((𝐵𝐷) = ∅ → (𝐹𝐺) Fn (𝐵𝐷)))
104, 9im2anan9 598 . . . . 5 (((𝐹 Fn 𝐴𝐺 Fn 𝐶) ∧ (𝐹 Fn 𝐵𝐺 Fn 𝐷)) → (((𝐴𝐶) = ∅ ∧ (𝐵𝐷) = ∅) → ((𝐹𝐺) Fn (𝐴𝐶) ∧ (𝐹𝐺) Fn (𝐵𝐷))))
1110an4s 588 . . . 4 (((𝐹 Fn 𝐴𝐹 Fn 𝐵) ∧ (𝐺 Fn 𝐶𝐺 Fn 𝐷)) → (((𝐴𝐶) = ∅ ∧ (𝐵𝐷) = ∅) → ((𝐹𝐺) Fn (𝐴𝐶) ∧ (𝐹𝐺) Fn (𝐵𝐷))))
121, 2, 11syl2anb 291 . . 3 ((𝐹:𝐴1-1-onto𝐵𝐺:𝐶1-1-onto𝐷) → (((𝐴𝐶) = ∅ ∧ (𝐵𝐷) = ∅) → ((𝐹𝐺) Fn (𝐴𝐶) ∧ (𝐹𝐺) Fn (𝐵𝐷))))
13 dff1o4 5481 . . 3 ((𝐹𝐺):(𝐴𝐶)–1-1-onto→(𝐵𝐷) ↔ ((𝐹𝐺) Fn (𝐴𝐶) ∧ (𝐹𝐺) Fn (𝐵𝐷)))
1412, 13imbitrrdi 162 . 2 ((𝐹:𝐴1-1-onto𝐵𝐺:𝐶1-1-onto𝐷) → (((𝐴𝐶) = ∅ ∧ (𝐵𝐷) = ∅) → (𝐹𝐺):(𝐴𝐶)–1-1-onto→(𝐵𝐷)))
1514imp 124 1 (((𝐹:𝐴1-1-onto𝐵𝐺:𝐶1-1-onto𝐷) ∧ ((𝐴𝐶) = ∅ ∧ (𝐵𝐷) = ∅)) → (𝐹𝐺):(𝐴𝐶)–1-1-onto→(𝐵𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1363  cun 3139  cin 3140  c0 3434  ccnv 4637   Fn wfn 5223  1-1-ontowf1o 5227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-v 2751  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-br 4016  df-opab 4077  df-id 4305  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235
This theorem is referenced by:  f1oprg  5517  unen  6829  zfz1isolem1  10833  ennnfonelemhf1o  12427
  Copyright terms: Public domain W3C validator