ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1oun GIF version

Theorem f1oun 5452
Description: The union of two one-to-one onto functions with disjoint domains and ranges. (Contributed by NM, 26-Mar-1998.)
Assertion
Ref Expression
f1oun (((𝐹:𝐴1-1-onto𝐵𝐺:𝐶1-1-onto𝐷) ∧ ((𝐴𝐶) = ∅ ∧ (𝐵𝐷) = ∅)) → (𝐹𝐺):(𝐴𝐶)–1-1-onto→(𝐵𝐷))

Proof of Theorem f1oun
StepHypRef Expression
1 dff1o4 5440 . . . 4 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹 Fn 𝐴𝐹 Fn 𝐵))
2 dff1o4 5440 . . . 4 (𝐺:𝐶1-1-onto𝐷 ↔ (𝐺 Fn 𝐶𝐺 Fn 𝐷))
3 fnun 5294 . . . . . . 7 (((𝐹 Fn 𝐴𝐺 Fn 𝐶) ∧ (𝐴𝐶) = ∅) → (𝐹𝐺) Fn (𝐴𝐶))
43ex 114 . . . . . 6 ((𝐹 Fn 𝐴𝐺 Fn 𝐶) → ((𝐴𝐶) = ∅ → (𝐹𝐺) Fn (𝐴𝐶)))
5 fnun 5294 . . . . . . . 8 (((𝐹 Fn 𝐵𝐺 Fn 𝐷) ∧ (𝐵𝐷) = ∅) → (𝐹𝐺) Fn (𝐵𝐷))
6 cnvun 5009 . . . . . . . . 9 (𝐹𝐺) = (𝐹𝐺)
76fneq1i 5282 . . . . . . . 8 ((𝐹𝐺) Fn (𝐵𝐷) ↔ (𝐹𝐺) Fn (𝐵𝐷))
85, 7sylibr 133 . . . . . . 7 (((𝐹 Fn 𝐵𝐺 Fn 𝐷) ∧ (𝐵𝐷) = ∅) → (𝐹𝐺) Fn (𝐵𝐷))
98ex 114 . . . . . 6 ((𝐹 Fn 𝐵𝐺 Fn 𝐷) → ((𝐵𝐷) = ∅ → (𝐹𝐺) Fn (𝐵𝐷)))
104, 9im2anan9 588 . . . . 5 (((𝐹 Fn 𝐴𝐺 Fn 𝐶) ∧ (𝐹 Fn 𝐵𝐺 Fn 𝐷)) → (((𝐴𝐶) = ∅ ∧ (𝐵𝐷) = ∅) → ((𝐹𝐺) Fn (𝐴𝐶) ∧ (𝐹𝐺) Fn (𝐵𝐷))))
1110an4s 578 . . . 4 (((𝐹 Fn 𝐴𝐹 Fn 𝐵) ∧ (𝐺 Fn 𝐶𝐺 Fn 𝐷)) → (((𝐴𝐶) = ∅ ∧ (𝐵𝐷) = ∅) → ((𝐹𝐺) Fn (𝐴𝐶) ∧ (𝐹𝐺) Fn (𝐵𝐷))))
121, 2, 11syl2anb 289 . . 3 ((𝐹:𝐴1-1-onto𝐵𝐺:𝐶1-1-onto𝐷) → (((𝐴𝐶) = ∅ ∧ (𝐵𝐷) = ∅) → ((𝐹𝐺) Fn (𝐴𝐶) ∧ (𝐹𝐺) Fn (𝐵𝐷))))
13 dff1o4 5440 . . 3 ((𝐹𝐺):(𝐴𝐶)–1-1-onto→(𝐵𝐷) ↔ ((𝐹𝐺) Fn (𝐴𝐶) ∧ (𝐹𝐺) Fn (𝐵𝐷)))
1412, 13syl6ibr 161 . 2 ((𝐹:𝐴1-1-onto𝐵𝐺:𝐶1-1-onto𝐷) → (((𝐴𝐶) = ∅ ∧ (𝐵𝐷) = ∅) → (𝐹𝐺):(𝐴𝐶)–1-1-onto→(𝐵𝐷)))
1514imp 123 1 (((𝐹:𝐴1-1-onto𝐵𝐺:𝐶1-1-onto𝐷) ∧ ((𝐴𝐶) = ∅ ∧ (𝐵𝐷) = ∅)) → (𝐹𝐺):(𝐴𝐶)–1-1-onto→(𝐵𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  cun 3114  cin 3115  c0 3409  ccnv 4603   Fn wfn 5183  1-1-ontowf1o 5187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-id 4271  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195
This theorem is referenced by:  f1oprg  5476  unen  6782  zfz1isolem1  10753  ennnfonelemhf1o  12346
  Copyright terms: Public domain W3C validator