| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > trin | GIF version | ||
| Description: The intersection of transitive classes is transitive. (Contributed by NM, 9-May-1994.) |
| Ref | Expression |
|---|---|
| trin | ⊢ ((Tr 𝐴 ∧ Tr 𝐵) → Tr (𝐴 ∩ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3357 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
| 2 | trss 4155 | . . . . . 6 ⊢ (Tr 𝐴 → (𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐴)) | |
| 3 | trss 4155 | . . . . . 6 ⊢ (Tr 𝐵 → (𝑥 ∈ 𝐵 → 𝑥 ⊆ 𝐵)) | |
| 4 | 2, 3 | im2anan9 598 | . . . . 5 ⊢ ((Tr 𝐴 ∧ Tr 𝐵) → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → (𝑥 ⊆ 𝐴 ∧ 𝑥 ⊆ 𝐵))) |
| 5 | 1, 4 | biimtrid 152 | . . . 4 ⊢ ((Tr 𝐴 ∧ Tr 𝐵) → (𝑥 ∈ (𝐴 ∩ 𝐵) → (𝑥 ⊆ 𝐴 ∧ 𝑥 ⊆ 𝐵))) |
| 6 | ssin 3396 | . . . 4 ⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑥 ⊆ 𝐵) ↔ 𝑥 ⊆ (𝐴 ∩ 𝐵)) | |
| 7 | 5, 6 | imbitrdi 161 | . . 3 ⊢ ((Tr 𝐴 ∧ Tr 𝐵) → (𝑥 ∈ (𝐴 ∩ 𝐵) → 𝑥 ⊆ (𝐴 ∩ 𝐵))) |
| 8 | 7 | ralrimiv 2579 | . 2 ⊢ ((Tr 𝐴 ∧ Tr 𝐵) → ∀𝑥 ∈ (𝐴 ∩ 𝐵)𝑥 ⊆ (𝐴 ∩ 𝐵)) |
| 9 | dftr3 4150 | . 2 ⊢ (Tr (𝐴 ∩ 𝐵) ↔ ∀𝑥 ∈ (𝐴 ∩ 𝐵)𝑥 ⊆ (𝐴 ∩ 𝐵)) | |
| 10 | 8, 9 | sylibr 134 | 1 ⊢ ((Tr 𝐴 ∧ Tr 𝐵) → Tr (𝐴 ∩ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2177 ∀wral 2485 ∩ cin 3166 ⊆ wss 3167 Tr wtr 4146 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-v 2775 df-in 3173 df-ss 3180 df-uni 3853 df-tr 4147 |
| This theorem is referenced by: ordin 4436 |
| Copyright terms: Public domain | W3C validator |