ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  trin GIF version

Theorem trin 4141
Description: The intersection of transitive classes is transitive. (Contributed by NM, 9-May-1994.)
Assertion
Ref Expression
trin ((Tr 𝐴 ∧ Tr 𝐵) → Tr (𝐴𝐵))

Proof of Theorem trin
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elin 3346 . . . . 5 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
2 trss 4140 . . . . . 6 (Tr 𝐴 → (𝑥𝐴𝑥𝐴))
3 trss 4140 . . . . . 6 (Tr 𝐵 → (𝑥𝐵𝑥𝐵))
42, 3im2anan9 598 . . . . 5 ((Tr 𝐴 ∧ Tr 𝐵) → ((𝑥𝐴𝑥𝐵) → (𝑥𝐴𝑥𝐵)))
51, 4biimtrid 152 . . . 4 ((Tr 𝐴 ∧ Tr 𝐵) → (𝑥 ∈ (𝐴𝐵) → (𝑥𝐴𝑥𝐵)))
6 ssin 3385 . . . 4 ((𝑥𝐴𝑥𝐵) ↔ 𝑥 ⊆ (𝐴𝐵))
75, 6imbitrdi 161 . . 3 ((Tr 𝐴 ∧ Tr 𝐵) → (𝑥 ∈ (𝐴𝐵) → 𝑥 ⊆ (𝐴𝐵)))
87ralrimiv 2569 . 2 ((Tr 𝐴 ∧ Tr 𝐵) → ∀𝑥 ∈ (𝐴𝐵)𝑥 ⊆ (𝐴𝐵))
9 dftr3 4135 . 2 (Tr (𝐴𝐵) ↔ ∀𝑥 ∈ (𝐴𝐵)𝑥 ⊆ (𝐴𝐵))
108, 9sylibr 134 1 ((Tr 𝐴 ∧ Tr 𝐵) → Tr (𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2167  wral 2475  cin 3156  wss 3157  Tr wtr 4131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-in 3163  df-ss 3170  df-uni 3840  df-tr 4132
This theorem is referenced by:  ordin  4420
  Copyright terms: Public domain W3C validator