ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inssdif0im GIF version

Theorem inssdif0im 3527
Description: Intersection, subclass, and difference relationship. In classical logic the converse would also hold. (Contributed by Jim Kingdon, 3-Aug-2018.)
Assertion
Ref Expression
inssdif0im ((𝐴𝐵) ⊆ 𝐶 → (𝐴 ∩ (𝐵𝐶)) = ∅)

Proof of Theorem inssdif0im
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elin 3355 . . . . . 6 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
21imbi1i 238 . . . . 5 ((𝑥 ∈ (𝐴𝐵) → 𝑥𝐶) ↔ ((𝑥𝐴𝑥𝐵) → 𝑥𝐶))
3 imanim 689 . . . . 5 (((𝑥𝐴𝑥𝐵) → 𝑥𝐶) → ¬ ((𝑥𝐴𝑥𝐵) ∧ ¬ 𝑥𝐶))
42, 3sylbi 121 . . . 4 ((𝑥 ∈ (𝐴𝐵) → 𝑥𝐶) → ¬ ((𝑥𝐴𝑥𝐵) ∧ ¬ 𝑥𝐶))
5 eldif 3174 . . . . . 6 (𝑥 ∈ (𝐵𝐶) ↔ (𝑥𝐵 ∧ ¬ 𝑥𝐶))
65anbi2i 457 . . . . 5 ((𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ (𝑥𝐴 ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
7 elin 3355 . . . . 5 (𝑥 ∈ (𝐴 ∩ (𝐵𝐶)) ↔ (𝑥𝐴𝑥 ∈ (𝐵𝐶)))
8 anass 401 . . . . 5 (((𝑥𝐴𝑥𝐵) ∧ ¬ 𝑥𝐶) ↔ (𝑥𝐴 ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
96, 7, 83bitr4ri 213 . . . 4 (((𝑥𝐴𝑥𝐵) ∧ ¬ 𝑥𝐶) ↔ 𝑥 ∈ (𝐴 ∩ (𝐵𝐶)))
104, 9sylnib 677 . . 3 ((𝑥 ∈ (𝐴𝐵) → 𝑥𝐶) → ¬ 𝑥 ∈ (𝐴 ∩ (𝐵𝐶)))
1110alimi 1477 . 2 (∀𝑥(𝑥 ∈ (𝐴𝐵) → 𝑥𝐶) → ∀𝑥 ¬ 𝑥 ∈ (𝐴 ∩ (𝐵𝐶)))
12 ssalel 3180 . 2 ((𝐴𝐵) ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ (𝐴𝐵) → 𝑥𝐶))
13 eq0 3478 . 2 ((𝐴 ∩ (𝐵𝐶)) = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ (𝐴 ∩ (𝐵𝐶)))
1411, 12, 133imtr4i 201 1 ((𝐴𝐵) ⊆ 𝐶 → (𝐴 ∩ (𝐵𝐶)) = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wal 1370   = wceq 1372  wcel 2175  cdif 3162  cin 3164  wss 3165  c0 3459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-dif 3167  df-in 3171  df-ss 3178  df-nul 3460
This theorem is referenced by:  disjdif  3532
  Copyright terms: Public domain W3C validator