Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > inssdif0im | GIF version |
Description: Intersection, subclass, and difference relationship. In classical logic the converse would also hold. (Contributed by Jim Kingdon, 3-Aug-2018.) |
Ref | Expression |
---|---|
inssdif0im | ⊢ ((𝐴 ∩ 𝐵) ⊆ 𝐶 → (𝐴 ∩ (𝐵 ∖ 𝐶)) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3305 | . . . . . 6 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
2 | 1 | imbi1i 237 | . . . . 5 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) → 𝑥 ∈ 𝐶) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐶)) |
3 | imanim 678 | . . . . 5 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐶) → ¬ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ ¬ 𝑥 ∈ 𝐶)) | |
4 | 2, 3 | sylbi 120 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) → 𝑥 ∈ 𝐶) → ¬ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ ¬ 𝑥 ∈ 𝐶)) |
5 | eldif 3125 | . . . . . 6 ⊢ (𝑥 ∈ (𝐵 ∖ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)) | |
6 | 5 | anbi2i 453 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 ∖ 𝐶)) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶))) |
7 | elin 3305 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∩ (𝐵 ∖ 𝐶)) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 ∖ 𝐶))) | |
8 | anass 399 | . . . . 5 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ ¬ 𝑥 ∈ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶))) | |
9 | 6, 7, 8 | 3bitr4ri 212 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ ¬ 𝑥 ∈ 𝐶) ↔ 𝑥 ∈ (𝐴 ∩ (𝐵 ∖ 𝐶))) |
10 | 4, 9 | sylnib 666 | . . 3 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) → 𝑥 ∈ 𝐶) → ¬ 𝑥 ∈ (𝐴 ∩ (𝐵 ∖ 𝐶))) |
11 | 10 | alimi 1443 | . 2 ⊢ (∀𝑥(𝑥 ∈ (𝐴 ∩ 𝐵) → 𝑥 ∈ 𝐶) → ∀𝑥 ¬ 𝑥 ∈ (𝐴 ∩ (𝐵 ∖ 𝐶))) |
12 | dfss2 3131 | . 2 ⊢ ((𝐴 ∩ 𝐵) ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ (𝐴 ∩ 𝐵) → 𝑥 ∈ 𝐶)) | |
13 | eq0 3427 | . 2 ⊢ ((𝐴 ∩ (𝐵 ∖ 𝐶)) = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ (𝐴 ∩ (𝐵 ∖ 𝐶))) | |
14 | 11, 12, 13 | 3imtr4i 200 | 1 ⊢ ((𝐴 ∩ 𝐵) ⊆ 𝐶 → (𝐴 ∩ (𝐵 ∖ 𝐶)) = ∅) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∀wal 1341 = wceq 1343 ∈ wcel 2136 ∖ cdif 3113 ∩ cin 3115 ⊆ wss 3116 ∅c0 3409 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-dif 3118 df-in 3122 df-ss 3129 df-nul 3410 |
This theorem is referenced by: disjdif 3481 |
Copyright terms: Public domain | W3C validator |