| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > inssdif0im | GIF version | ||
| Description: Intersection, subclass, and difference relationship. In classical logic the converse would also hold. (Contributed by Jim Kingdon, 3-Aug-2018.) |
| Ref | Expression |
|---|---|
| inssdif0im | ⊢ ((𝐴 ∩ 𝐵) ⊆ 𝐶 → (𝐴 ∩ (𝐵 ∖ 𝐶)) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3364 | . . . . . 6 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
| 2 | 1 | imbi1i 238 | . . . . 5 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) → 𝑥 ∈ 𝐶) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐶)) |
| 3 | imanim 690 | . . . . 5 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐶) → ¬ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ ¬ 𝑥 ∈ 𝐶)) | |
| 4 | 2, 3 | sylbi 121 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) → 𝑥 ∈ 𝐶) → ¬ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ ¬ 𝑥 ∈ 𝐶)) |
| 5 | eldif 3183 | . . . . . 6 ⊢ (𝑥 ∈ (𝐵 ∖ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)) | |
| 6 | 5 | anbi2i 457 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 ∖ 𝐶)) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶))) |
| 7 | elin 3364 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∩ (𝐵 ∖ 𝐶)) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 ∖ 𝐶))) | |
| 8 | anass 401 | . . . . 5 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ ¬ 𝑥 ∈ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶))) | |
| 9 | 6, 7, 8 | 3bitr4ri 213 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ ¬ 𝑥 ∈ 𝐶) ↔ 𝑥 ∈ (𝐴 ∩ (𝐵 ∖ 𝐶))) |
| 10 | 4, 9 | sylnib 678 | . . 3 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) → 𝑥 ∈ 𝐶) → ¬ 𝑥 ∈ (𝐴 ∩ (𝐵 ∖ 𝐶))) |
| 11 | 10 | alimi 1479 | . 2 ⊢ (∀𝑥(𝑥 ∈ (𝐴 ∩ 𝐵) → 𝑥 ∈ 𝐶) → ∀𝑥 ¬ 𝑥 ∈ (𝐴 ∩ (𝐵 ∖ 𝐶))) |
| 12 | ssalel 3189 | . 2 ⊢ ((𝐴 ∩ 𝐵) ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ (𝐴 ∩ 𝐵) → 𝑥 ∈ 𝐶)) | |
| 13 | eq0 3487 | . 2 ⊢ ((𝐴 ∩ (𝐵 ∖ 𝐶)) = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ (𝐴 ∩ (𝐵 ∖ 𝐶))) | |
| 14 | 11, 12, 13 | 3imtr4i 201 | 1 ⊢ ((𝐴 ∩ 𝐵) ⊆ 𝐶 → (𝐴 ∩ (𝐵 ∖ 𝐶)) = ∅) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∀wal 1371 = wceq 1373 ∈ wcel 2178 ∖ cdif 3171 ∩ cin 3173 ⊆ wss 3174 ∅c0 3468 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-dif 3176 df-in 3180 df-ss 3187 df-nul 3469 |
| This theorem is referenced by: disjdif 3541 |
| Copyright terms: Public domain | W3C validator |