ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inssdif0im GIF version

Theorem inssdif0im 3476
Description: Intersection, subclass, and difference relationship. In classical logic the converse would also hold. (Contributed by Jim Kingdon, 3-Aug-2018.)
Assertion
Ref Expression
inssdif0im ((𝐴𝐵) ⊆ 𝐶 → (𝐴 ∩ (𝐵𝐶)) = ∅)

Proof of Theorem inssdif0im
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elin 3305 . . . . . 6 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
21imbi1i 237 . . . . 5 ((𝑥 ∈ (𝐴𝐵) → 𝑥𝐶) ↔ ((𝑥𝐴𝑥𝐵) → 𝑥𝐶))
3 imanim 678 . . . . 5 (((𝑥𝐴𝑥𝐵) → 𝑥𝐶) → ¬ ((𝑥𝐴𝑥𝐵) ∧ ¬ 𝑥𝐶))
42, 3sylbi 120 . . . 4 ((𝑥 ∈ (𝐴𝐵) → 𝑥𝐶) → ¬ ((𝑥𝐴𝑥𝐵) ∧ ¬ 𝑥𝐶))
5 eldif 3125 . . . . . 6 (𝑥 ∈ (𝐵𝐶) ↔ (𝑥𝐵 ∧ ¬ 𝑥𝐶))
65anbi2i 453 . . . . 5 ((𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ (𝑥𝐴 ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
7 elin 3305 . . . . 5 (𝑥 ∈ (𝐴 ∩ (𝐵𝐶)) ↔ (𝑥𝐴𝑥 ∈ (𝐵𝐶)))
8 anass 399 . . . . 5 (((𝑥𝐴𝑥𝐵) ∧ ¬ 𝑥𝐶) ↔ (𝑥𝐴 ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
96, 7, 83bitr4ri 212 . . . 4 (((𝑥𝐴𝑥𝐵) ∧ ¬ 𝑥𝐶) ↔ 𝑥 ∈ (𝐴 ∩ (𝐵𝐶)))
104, 9sylnib 666 . . 3 ((𝑥 ∈ (𝐴𝐵) → 𝑥𝐶) → ¬ 𝑥 ∈ (𝐴 ∩ (𝐵𝐶)))
1110alimi 1443 . 2 (∀𝑥(𝑥 ∈ (𝐴𝐵) → 𝑥𝐶) → ∀𝑥 ¬ 𝑥 ∈ (𝐴 ∩ (𝐵𝐶)))
12 dfss2 3131 . 2 ((𝐴𝐵) ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ (𝐴𝐵) → 𝑥𝐶))
13 eq0 3427 . 2 ((𝐴 ∩ (𝐵𝐶)) = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ (𝐴 ∩ (𝐵𝐶)))
1411, 12, 133imtr4i 200 1 ((𝐴𝐵) ⊆ 𝐶 → (𝐴 ∩ (𝐵𝐶)) = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wal 1341   = wceq 1343  wcel 2136  cdif 3113  cin 3115  wss 3116  c0 3409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-dif 3118  df-in 3122  df-ss 3129  df-nul 3410
This theorem is referenced by:  disjdif  3481
  Copyright terms: Public domain W3C validator