| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssdif0im | GIF version | ||
| Description: Subclass implies empty difference. One direction of Exercise 7 of [TakeutiZaring] p. 22. In classical logic this would be an equivalence. (Contributed by Jim Kingdon, 2-Aug-2018.) |
| Ref | Expression |
|---|---|
| ssdif0im | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐵) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imanim 690 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → ¬ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
| 2 | eldif 3179 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
| 3 | 1, 2 | sylnibr 679 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → ¬ 𝑥 ∈ (𝐴 ∖ 𝐵)) |
| 4 | 3 | alimi 1479 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → ∀𝑥 ¬ 𝑥 ∈ (𝐴 ∖ 𝐵)) |
| 5 | ssalel 3185 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 6 | eq0 3483 | . 2 ⊢ ((𝐴 ∖ 𝐵) = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ (𝐴 ∖ 𝐵)) | |
| 7 | 4, 5, 6 | 3imtr4i 201 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐵) = ∅) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∀wal 1371 = wceq 1373 ∈ wcel 2177 ∖ cdif 3167 ⊆ wss 3170 ∅c0 3464 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-dif 3172 df-in 3176 df-ss 3183 df-nul 3465 |
| This theorem is referenced by: vdif0im 3530 difrab0eqim 3531 difid 3533 difin0 3538 |
| Copyright terms: Public domain | W3C validator |