ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssdif0im GIF version

Theorem ssdif0im 3556
Description: Subclass implies empty difference. One direction of Exercise 7 of [TakeutiZaring] p. 22. In classical logic this would be an equivalence. (Contributed by Jim Kingdon, 2-Aug-2018.)
Assertion
Ref Expression
ssdif0im (𝐴𝐵 → (𝐴𝐵) = ∅)

Proof of Theorem ssdif0im
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 imanim 692 . . . 4 ((𝑥𝐴𝑥𝐵) → ¬ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
2 eldif 3206 . . . 4 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
31, 2sylnibr 681 . . 3 ((𝑥𝐴𝑥𝐵) → ¬ 𝑥 ∈ (𝐴𝐵))
43alimi 1501 . 2 (∀𝑥(𝑥𝐴𝑥𝐵) → ∀𝑥 ¬ 𝑥 ∈ (𝐴𝐵))
5 ssalel 3212 . 2 (𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
6 eq0 3510 . 2 ((𝐴𝐵) = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ (𝐴𝐵))
74, 5, 63imtr4i 201 1 (𝐴𝐵 → (𝐴𝐵) = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wal 1393   = wceq 1395  wcel 2200  cdif 3194  wss 3197  c0 3491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199  df-in 3203  df-ss 3210  df-nul 3492
This theorem is referenced by:  vdif0im  3557  difrab0eqim  3558  difid  3560  difin0  3565
  Copyright terms: Public domain W3C validator