ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difdif GIF version

Theorem difdif 3329
Description: Double class difference. Exercise 11 of [TakeutiZaring] p. 22. (Contributed by NM, 17-May-1998.)
Assertion
Ref Expression
difdif (𝐴 ∖ (𝐵𝐴)) = 𝐴

Proof of Theorem difdif
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . 3 ((𝑥𝐴 ∧ ¬ 𝑥 ∈ (𝐵𝐴)) → 𝑥𝐴)
2 pm4.45im 334 . . . 4 (𝑥𝐴 ↔ (𝑥𝐴 ∧ (𝑥𝐵𝑥𝐴)))
3 imanim 692 . . . . . 6 ((𝑥𝐵𝑥𝐴) → ¬ (𝑥𝐵 ∧ ¬ 𝑥𝐴))
4 eldif 3206 . . . . . 6 (𝑥 ∈ (𝐵𝐴) ↔ (𝑥𝐵 ∧ ¬ 𝑥𝐴))
53, 4sylnibr 681 . . . . 5 ((𝑥𝐵𝑥𝐴) → ¬ 𝑥 ∈ (𝐵𝐴))
65anim2i 342 . . . 4 ((𝑥𝐴 ∧ (𝑥𝐵𝑥𝐴)) → (𝑥𝐴 ∧ ¬ 𝑥 ∈ (𝐵𝐴)))
72, 6sylbi 121 . . 3 (𝑥𝐴 → (𝑥𝐴 ∧ ¬ 𝑥 ∈ (𝐵𝐴)))
81, 7impbii 126 . 2 ((𝑥𝐴 ∧ ¬ 𝑥 ∈ (𝐵𝐴)) ↔ 𝑥𝐴)
98difeqri 3324 1 (𝐴 ∖ (𝐵𝐴)) = 𝐴
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104   = wceq 1395  wcel 2200  cdif 3194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199
This theorem is referenced by:  dif0  3562
  Copyright terms: Public domain W3C validator