| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > difdif | GIF version | ||
| Description: Double class difference. Exercise 11 of [TakeutiZaring] p. 22. (Contributed by NM, 17-May-1998.) |
| Ref | Expression |
|---|---|
| difdif | ⊢ (𝐴 ∖ (𝐵 ∖ 𝐴)) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ (𝐵 ∖ 𝐴)) → 𝑥 ∈ 𝐴) | |
| 2 | pm4.45im 334 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴))) | |
| 3 | imanim 690 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴) → ¬ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) | |
| 4 | eldif 3179 | . . . . . 6 ⊢ (𝑥 ∈ (𝐵 ∖ 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) | |
| 5 | 3, 4 | sylnibr 679 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴) → ¬ 𝑥 ∈ (𝐵 ∖ 𝐴)) |
| 6 | 5 | anim2i 342 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴)) → (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ (𝐵 ∖ 𝐴))) |
| 7 | 2, 6 | sylbi 121 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ (𝐵 ∖ 𝐴))) |
| 8 | 1, 7 | impbii 126 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ (𝐵 ∖ 𝐴)) ↔ 𝑥 ∈ 𝐴) |
| 9 | 8 | difeqri 3297 | 1 ⊢ (𝐴 ∖ (𝐵 ∖ 𝐴)) = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ∖ cdif 3167 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-dif 3172 |
| This theorem is referenced by: dif0 3535 |
| Copyright terms: Public domain | W3C validator |