ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difdif GIF version

Theorem difdif 3165
Description: Double class difference. Exercise 11 of [TakeutiZaring] p. 22. (Contributed by NM, 17-May-1998.)
Assertion
Ref Expression
difdif (𝐴 ∖ (𝐵𝐴)) = 𝐴

Proof of Theorem difdif
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl 108 . . 3 ((𝑥𝐴 ∧ ¬ 𝑥 ∈ (𝐵𝐴)) → 𝑥𝐴)
2 pm4.45im 330 . . . 4 (𝑥𝐴 ↔ (𝑥𝐴 ∧ (𝑥𝐵𝑥𝐴)))
3 imanim 660 . . . . . 6 ((𝑥𝐵𝑥𝐴) → ¬ (𝑥𝐵 ∧ ¬ 𝑥𝐴))
4 eldif 3044 . . . . . 6 (𝑥 ∈ (𝐵𝐴) ↔ (𝑥𝐵 ∧ ¬ 𝑥𝐴))
53, 4sylnibr 649 . . . . 5 ((𝑥𝐵𝑥𝐴) → ¬ 𝑥 ∈ (𝐵𝐴))
65anim2i 337 . . . 4 ((𝑥𝐴 ∧ (𝑥𝐵𝑥𝐴)) → (𝑥𝐴 ∧ ¬ 𝑥 ∈ (𝐵𝐴)))
72, 6sylbi 120 . . 3 (𝑥𝐴 → (𝑥𝐴 ∧ ¬ 𝑥 ∈ (𝐵𝐴)))
81, 7impbii 125 . 2 ((𝑥𝐴 ∧ ¬ 𝑥 ∈ (𝐵𝐴)) ↔ 𝑥𝐴)
98difeqri 3160 1 (𝐴 ∖ (𝐵𝐴)) = 𝐴
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103   = wceq 1312  wcel 1461  cdif 3032
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095
This theorem depends on definitions:  df-bi 116  df-tru 1315  df-nf 1418  df-sb 1717  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-v 2657  df-dif 3037
This theorem is referenced by:  dif0  3397
  Copyright terms: Public domain W3C validator