Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > difdif | GIF version |
Description: Double class difference. Exercise 11 of [TakeutiZaring] p. 22. (Contributed by NM, 17-May-1998.) |
Ref | Expression |
---|---|
difdif | ⊢ (𝐴 ∖ (𝐵 ∖ 𝐴)) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ (𝐵 ∖ 𝐴)) → 𝑥 ∈ 𝐴) | |
2 | pm4.45im 332 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴))) | |
3 | imanim 678 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴) → ¬ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) | |
4 | eldif 3107 | . . . . . 6 ⊢ (𝑥 ∈ (𝐵 ∖ 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) | |
5 | 3, 4 | sylnibr 667 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴) → ¬ 𝑥 ∈ (𝐵 ∖ 𝐴)) |
6 | 5 | anim2i 340 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴)) → (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ (𝐵 ∖ 𝐴))) |
7 | 2, 6 | sylbi 120 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ (𝐵 ∖ 𝐴))) |
8 | 1, 7 | impbii 125 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ (𝐵 ∖ 𝐴)) ↔ 𝑥 ∈ 𝐴) |
9 | 8 | difeqri 3223 | 1 ⊢ (𝐴 ∖ (𝐵 ∖ 𝐴)) = 𝐴 |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 = wceq 1332 ∈ wcel 2125 ∖ cdif 3095 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-v 2711 df-dif 3100 |
This theorem is referenced by: dif0 3460 |
Copyright terms: Public domain | W3C validator |