ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difdif GIF version

Theorem difdif 3284
Description: Double class difference. Exercise 11 of [TakeutiZaring] p. 22. (Contributed by NM, 17-May-1998.)
Assertion
Ref Expression
difdif (𝐴 ∖ (𝐵𝐴)) = 𝐴

Proof of Theorem difdif
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . 3 ((𝑥𝐴 ∧ ¬ 𝑥 ∈ (𝐵𝐴)) → 𝑥𝐴)
2 pm4.45im 334 . . . 4 (𝑥𝐴 ↔ (𝑥𝐴 ∧ (𝑥𝐵𝑥𝐴)))
3 imanim 689 . . . . . 6 ((𝑥𝐵𝑥𝐴) → ¬ (𝑥𝐵 ∧ ¬ 𝑥𝐴))
4 eldif 3162 . . . . . 6 (𝑥 ∈ (𝐵𝐴) ↔ (𝑥𝐵 ∧ ¬ 𝑥𝐴))
53, 4sylnibr 678 . . . . 5 ((𝑥𝐵𝑥𝐴) → ¬ 𝑥 ∈ (𝐵𝐴))
65anim2i 342 . . . 4 ((𝑥𝐴 ∧ (𝑥𝐵𝑥𝐴)) → (𝑥𝐴 ∧ ¬ 𝑥 ∈ (𝐵𝐴)))
72, 6sylbi 121 . . 3 (𝑥𝐴 → (𝑥𝐴 ∧ ¬ 𝑥 ∈ (𝐵𝐴)))
81, 7impbii 126 . 2 ((𝑥𝐴 ∧ ¬ 𝑥 ∈ (𝐵𝐴)) ↔ 𝑥𝐴)
98difeqri 3279 1 (𝐴 ∖ (𝐵𝐴)) = 𝐴
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104   = wceq 1364  wcel 2164  cdif 3150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-dif 3155
This theorem is referenced by:  dif0  3517
  Copyright terms: Public domain W3C validator