Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nominpos | GIF version |
Description: There is no smallest positive real number. (Contributed by NM, 28-Oct-2004.) |
Ref | Expression |
---|---|
nominpos | ⊢ ¬ ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ ¬ ∃𝑦 ∈ ℝ (0 < 𝑦 ∧ 𝑦 < 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rehalfcl 9043 | . . . 4 ⊢ (𝑥 ∈ ℝ → (𝑥 / 2) ∈ ℝ) | |
2 | 2re 8886 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
3 | 2pos 8907 | . . . . . . 7 ⊢ 0 < 2 | |
4 | divgt0 8726 | . . . . . . 7 ⊢ (((𝑥 ∈ ℝ ∧ 0 < 𝑥) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 < (𝑥 / 2)) | |
5 | 2, 3, 4 | mpanr12 436 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 0 < 𝑥) → 0 < (𝑥 / 2)) |
6 | 5 | ex 114 | . . . . 5 ⊢ (𝑥 ∈ ℝ → (0 < 𝑥 → 0 < (𝑥 / 2))) |
7 | halfpos 9047 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → (0 < 𝑥 ↔ (𝑥 / 2) < 𝑥)) | |
8 | 7 | biimpd 143 | . . . . 5 ⊢ (𝑥 ∈ ℝ → (0 < 𝑥 → (𝑥 / 2) < 𝑥)) |
9 | 6, 8 | jcad 305 | . . . 4 ⊢ (𝑥 ∈ ℝ → (0 < 𝑥 → (0 < (𝑥 / 2) ∧ (𝑥 / 2) < 𝑥))) |
10 | breq2 3969 | . . . . . 6 ⊢ (𝑦 = (𝑥 / 2) → (0 < 𝑦 ↔ 0 < (𝑥 / 2))) | |
11 | breq1 3968 | . . . . . 6 ⊢ (𝑦 = (𝑥 / 2) → (𝑦 < 𝑥 ↔ (𝑥 / 2) < 𝑥)) | |
12 | 10, 11 | anbi12d 465 | . . . . 5 ⊢ (𝑦 = (𝑥 / 2) → ((0 < 𝑦 ∧ 𝑦 < 𝑥) ↔ (0 < (𝑥 / 2) ∧ (𝑥 / 2) < 𝑥))) |
13 | 12 | rspcev 2816 | . . . 4 ⊢ (((𝑥 / 2) ∈ ℝ ∧ (0 < (𝑥 / 2) ∧ (𝑥 / 2) < 𝑥)) → ∃𝑦 ∈ ℝ (0 < 𝑦 ∧ 𝑦 < 𝑥)) |
14 | 1, 9, 13 | syl6an 1414 | . . 3 ⊢ (𝑥 ∈ ℝ → (0 < 𝑥 → ∃𝑦 ∈ ℝ (0 < 𝑦 ∧ 𝑦 < 𝑥))) |
15 | imanim 678 | . . 3 ⊢ ((0 < 𝑥 → ∃𝑦 ∈ ℝ (0 < 𝑦 ∧ 𝑦 < 𝑥)) → ¬ (0 < 𝑥 ∧ ¬ ∃𝑦 ∈ ℝ (0 < 𝑦 ∧ 𝑦 < 𝑥))) | |
16 | 14, 15 | syl 14 | . 2 ⊢ (𝑥 ∈ ℝ → ¬ (0 < 𝑥 ∧ ¬ ∃𝑦 ∈ ℝ (0 < 𝑦 ∧ 𝑦 < 𝑥))) |
17 | 16 | nrex 2549 | 1 ⊢ ¬ ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ ¬ ∃𝑦 ∈ ℝ (0 < 𝑦 ∧ 𝑦 < 𝑥)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 = wceq 1335 ∈ wcel 2128 ∃wrex 2436 class class class wbr 3965 (class class class)co 5818 ℝcr 7714 0cc0 7715 < clt 7895 / cdiv 8528 2c2 8867 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 ax-cnex 7806 ax-resscn 7807 ax-1cn 7808 ax-1re 7809 ax-icn 7810 ax-addcl 7811 ax-addrcl 7812 ax-mulcl 7813 ax-mulrcl 7814 ax-addcom 7815 ax-mulcom 7816 ax-addass 7817 ax-mulass 7818 ax-distr 7819 ax-i2m1 7820 ax-0lt1 7821 ax-1rid 7822 ax-0id 7823 ax-rnegex 7824 ax-precex 7825 ax-cnre 7826 ax-pre-ltirr 7827 ax-pre-ltwlin 7828 ax-pre-lttrn 7829 ax-pre-apti 7830 ax-pre-ltadd 7831 ax-pre-mulgt0 7832 ax-pre-mulext 7833 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rmo 2443 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-id 4252 df-po 4255 df-iso 4256 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-iota 5132 df-fun 5169 df-fv 5175 df-riota 5774 df-ov 5821 df-oprab 5822 df-mpo 5823 df-pnf 7897 df-mnf 7898 df-xr 7899 df-ltxr 7900 df-le 7901 df-sub 8031 df-neg 8032 df-reap 8433 df-ap 8440 df-div 8529 df-2 8875 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |