ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rmoim GIF version

Theorem rmoim 2984
Description: Restricted "at most one" is preserved through implication (note wff reversal). (Contributed by Alexander van der Vekens, 17-Jun-2017.)
Assertion
Ref Expression
rmoim (∀𝑥𝐴 (𝜑𝜓) → (∃*𝑥𝐴 𝜓 → ∃*𝑥𝐴 𝜑))

Proof of Theorem rmoim
StepHypRef Expression
1 df-ral 2493 . . 3 (∀𝑥𝐴 (𝜑𝜓) ↔ ∀𝑥(𝑥𝐴 → (𝜑𝜓)))
2 imdistan 444 . . . 4 ((𝑥𝐴 → (𝜑𝜓)) ↔ ((𝑥𝐴𝜑) → (𝑥𝐴𝜓)))
32albii 1496 . . 3 (∀𝑥(𝑥𝐴 → (𝜑𝜓)) ↔ ∀𝑥((𝑥𝐴𝜑) → (𝑥𝐴𝜓)))
41, 3bitri 184 . 2 (∀𝑥𝐴 (𝜑𝜓) ↔ ∀𝑥((𝑥𝐴𝜑) → (𝑥𝐴𝜓)))
5 moim 2122 . . 3 (∀𝑥((𝑥𝐴𝜑) → (𝑥𝐴𝜓)) → (∃*𝑥(𝑥𝐴𝜓) → ∃*𝑥(𝑥𝐴𝜑)))
6 df-rmo 2496 . . 3 (∃*𝑥𝐴 𝜓 ↔ ∃*𝑥(𝑥𝐴𝜓))
7 df-rmo 2496 . . 3 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥(𝑥𝐴𝜑))
85, 6, 73imtr4g 205 . 2 (∀𝑥((𝑥𝐴𝜑) → (𝑥𝐴𝜓)) → (∃*𝑥𝐴 𝜓 → ∃*𝑥𝐴 𝜑))
94, 8sylbi 121 1 (∀𝑥𝐴 (𝜑𝜓) → (∃*𝑥𝐴 𝜓 → ∃*𝑥𝐴 𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1373  ∃*wmo 2058  wcel 2180  wral 2488  ∃*wrmo 2491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561
This theorem depends on definitions:  df-bi 117  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-ral 2493  df-rmo 2496
This theorem is referenced by:  rmoimia  2985  disjss2  4041  rinvmod  13812
  Copyright terms: Public domain W3C validator