ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlembi GIF version

Theorem bezoutlembi 10774
Description: Lemma for Bézout's identity. Like bezoutlembz 10773 but the greatest common divisor condition is a biconditional, not just an implication. (Contributed by Mario Carneiro and Jim Kingdon, 8-Jan-2022.)
Assertion
Ref Expression
bezoutlembi ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
Distinct variable groups:   𝐴,𝑑,𝑥,𝑦,𝑧   𝐵,𝑑,𝑥,𝑦,𝑧

Proof of Theorem bezoutlembi
StepHypRef Expression
1 bezoutlembz 10773 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
2 simpllr 501 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → 𝑧 ∈ ℤ)
3 simpll 496 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) → 𝐴 ∈ ℤ)
43ad3antrrr 476 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → 𝐴 ∈ ℤ)
5 simplrl 502 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → 𝑥 ∈ ℤ)
6 dvdsmultr1 10614 . . . . . . . . . . . 12 ((𝑧 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑧𝐴𝑧 ∥ (𝐴 · 𝑥)))
72, 4, 5, 6syl3anc 1170 . . . . . . . . . . 11 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → (𝑧𝐴𝑧 ∥ (𝐴 · 𝑥)))
8 simplr 497 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) → 𝐵 ∈ ℤ)
98ad3antrrr 476 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → 𝐵 ∈ ℤ)
10 simplrr 503 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → 𝑦 ∈ ℤ)
11 dvdsmultr1 10614 . . . . . . . . . . . 12 ((𝑧 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑧𝐵𝑧 ∥ (𝐵 · 𝑦)))
122, 9, 10, 11syl3anc 1170 . . . . . . . . . . 11 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → (𝑧𝐵𝑧 ∥ (𝐵 · 𝑦)))
134, 5zmulcld 8770 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → (𝐴 · 𝑥) ∈ ℤ)
149, 10zmulcld 8770 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → (𝐵 · 𝑦) ∈ ℤ)
15 dvds2add 10610 . . . . . . . . . . . 12 ((𝑧 ∈ ℤ ∧ (𝐴 · 𝑥) ∈ ℤ ∧ (𝐵 · 𝑦) ∈ ℤ) → ((𝑧 ∥ (𝐴 · 𝑥) ∧ 𝑧 ∥ (𝐵 · 𝑦)) → 𝑧 ∥ ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
162, 13, 14, 15syl3anc 1170 . . . . . . . . . . 11 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → ((𝑧 ∥ (𝐴 · 𝑥) ∧ 𝑧 ∥ (𝐵 · 𝑦)) → 𝑧 ∥ ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
177, 12, 16syl2and 289 . . . . . . . . . 10 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → ((𝑧𝐴𝑧𝐵) → 𝑧 ∥ ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
18 simpr 108 . . . . . . . . . . 11 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
1918breq2d 3823 . . . . . . . . . 10 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → (𝑧𝑑𝑧 ∥ ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
2017, 19sylibrd 167 . . . . . . . . 9 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → ((𝑧𝐴𝑧𝐵) → 𝑧𝑑))
21 bi3 117 . . . . . . . . 9 ((𝑧𝑑 → (𝑧𝐴𝑧𝐵)) → (((𝑧𝐴𝑧𝐵) → 𝑧𝑑) → (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵))))
2220, 21syl5com 29 . . . . . . . 8 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → ((𝑧𝑑 → (𝑧𝐴𝑧𝐵)) → (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵))))
2322ex 113 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ((𝑧𝑑 → (𝑧𝐴𝑧𝐵)) → (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)))))
2423rexlimdvva 2490 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ((𝑧𝑑 → (𝑧𝐴𝑧𝐵)) → (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)))))
25 imdistan 433 . . . . . . 7 ((∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ((𝑧𝑑 → (𝑧𝐴𝑧𝐵)) → (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)))) ↔ ((∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ∧ (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ∧ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)))))
26 ancom 262 . . . . . . . 8 (((𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) ↔ (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ∧ (𝑧𝑑 → (𝑧𝐴𝑧𝐵))))
27 ancom 262 . . . . . . . 8 (((𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) ↔ (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ∧ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵))))
2826, 27imbi12i 237 . . . . . . 7 ((((𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → ((𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) ↔ ((∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ∧ (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ∧ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)))))
2925, 28bitr4i 185 . . . . . 6 ((∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ((𝑧𝑑 → (𝑧𝐴𝑧𝐵)) → (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)))) ↔ (((𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → ((𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
3024, 29sylib 120 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) → (((𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → ((𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
3130ralimdva 2435 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) → (∀𝑧 ∈ ℤ ((𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → ∀𝑧 ∈ ℤ ((𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
32 0z 8657 . . . . . 6 0 ∈ ℤ
33 elex2 2626 . . . . . 6 (0 ∈ ℤ → ∃𝑧 𝑧 ∈ ℤ)
3432, 33ax-mp 7 . . . . 5 𝑧 𝑧 ∈ ℤ
35 r19.27mv 3359 . . . . 5 (∃𝑧 𝑧 ∈ ℤ → (∀𝑧 ∈ ℤ ((𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) ↔ (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
3634, 35ax-mp 7 . . . 4 (∀𝑧 ∈ ℤ ((𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) ↔ (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
37 r19.27mv 3359 . . . . 5 (∃𝑧 𝑧 ∈ ℤ → (∀𝑧 ∈ ℤ ((𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) ↔ (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
3834, 37ax-mp 7 . . . 4 (∀𝑧 ∈ ℤ ((𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) ↔ (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
3931, 36, 383imtr3g 202 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) → ((∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
4039reximdva 2469 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
411, 40mpd 13 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1285  wex 1422  wcel 1434  wral 2353  wrex 2354   class class class wbr 3811  (class class class)co 5591  0cc0 7253   + caddc 7256   · cmul 7258  0cn0 8565  cz 8646  cdvds 10576
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3919  ax-sep 3922  ax-nul 3930  ax-pow 3974  ax-pr 4000  ax-un 4224  ax-setind 4316  ax-iinf 4366  ax-cnex 7339  ax-resscn 7340  ax-1cn 7341  ax-1re 7342  ax-icn 7343  ax-addcl 7344  ax-addrcl 7345  ax-mulcl 7346  ax-mulrcl 7347  ax-addcom 7348  ax-mulcom 7349  ax-addass 7350  ax-mulass 7351  ax-distr 7352  ax-i2m1 7353  ax-0lt1 7354  ax-1rid 7355  ax-0id 7356  ax-rnegex 7357  ax-precex 7358  ax-cnre 7359  ax-pre-ltirr 7360  ax-pre-ltwlin 7361  ax-pre-lttrn 7362  ax-pre-apti 7363  ax-pre-ltadd 7364  ax-pre-mulgt0 7365  ax-pre-mulext 7366  ax-arch 7367
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2614  df-sbc 2827  df-csb 2920  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-nul 3270  df-if 3374  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-iun 3706  df-br 3812  df-opab 3866  df-mpt 3867  df-tr 3902  df-id 4084  df-po 4087  df-iso 4088  df-iord 4157  df-on 4159  df-ilim 4160  df-suc 4162  df-iom 4369  df-xp 4407  df-rel 4408  df-cnv 4409  df-co 4410  df-dm 4411  df-rn 4412  df-res 4413  df-ima 4414  df-iota 4934  df-fun 4971  df-fn 4972  df-f 4973  df-f1 4974  df-fo 4975  df-f1o 4976  df-fv 4977  df-riota 5547  df-ov 5594  df-oprab 5595  df-mpt2 5596  df-1st 5846  df-2nd 5847  df-recs 6002  df-frec 6088  df-pnf 7427  df-mnf 7428  df-xr 7429  df-ltxr 7430  df-le 7431  df-sub 7558  df-neg 7559  df-reap 7952  df-ap 7959  df-div 8038  df-inn 8317  df-2 8375  df-n0 8566  df-z 8647  df-uz 8915  df-q 9000  df-rp 9030  df-fz 9320  df-fl 9566  df-mod 9619  df-iseq 9741  df-iexp 9792  df-cj 10103  df-re 10104  df-im 10105  df-rsqrt 10258  df-abs 10259  df-dvds 10577
This theorem is referenced by:  bezoutlemeu  10776  dfgcd3  10779  bezout  10780
  Copyright terms: Public domain W3C validator