ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlembi GIF version

Theorem bezoutlembi 11861
Description: Lemma for Bézout's identity. Like bezoutlembz 11860 but the greatest common divisor condition is a biconditional, not just an implication. (Contributed by Mario Carneiro and Jim Kingdon, 8-Jan-2022.)
Assertion
Ref Expression
bezoutlembi ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
Distinct variable groups:   𝐴,𝑑,𝑥,𝑦,𝑧   𝐵,𝑑,𝑥,𝑦,𝑧

Proof of Theorem bezoutlembi
StepHypRef Expression
1 bezoutlembz 11860 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
2 simpllr 524 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → 𝑧 ∈ ℤ)
3 simpll 519 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) → 𝐴 ∈ ℤ)
43ad3antrrr 484 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → 𝐴 ∈ ℤ)
5 simplrl 525 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → 𝑥 ∈ ℤ)
6 dvdsmultr1 11698 . . . . . . . . . . . 12 ((𝑧 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑧𝐴𝑧 ∥ (𝐴 · 𝑥)))
72, 4, 5, 6syl3anc 1217 . . . . . . . . . . 11 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → (𝑧𝐴𝑧 ∥ (𝐴 · 𝑥)))
8 simplr 520 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) → 𝐵 ∈ ℤ)
98ad3antrrr 484 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → 𝐵 ∈ ℤ)
10 simplrr 526 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → 𝑦 ∈ ℤ)
11 dvdsmultr1 11698 . . . . . . . . . . . 12 ((𝑧 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑧𝐵𝑧 ∥ (𝐵 · 𝑦)))
122, 9, 10, 11syl3anc 1217 . . . . . . . . . . 11 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → (𝑧𝐵𝑧 ∥ (𝐵 · 𝑦)))
134, 5zmulcld 9271 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → (𝐴 · 𝑥) ∈ ℤ)
149, 10zmulcld 9271 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → (𝐵 · 𝑦) ∈ ℤ)
15 dvds2add 11694 . . . . . . . . . . . 12 ((𝑧 ∈ ℤ ∧ (𝐴 · 𝑥) ∈ ℤ ∧ (𝐵 · 𝑦) ∈ ℤ) → ((𝑧 ∥ (𝐴 · 𝑥) ∧ 𝑧 ∥ (𝐵 · 𝑦)) → 𝑧 ∥ ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
162, 13, 14, 15syl3anc 1217 . . . . . . . . . . 11 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → ((𝑧 ∥ (𝐴 · 𝑥) ∧ 𝑧 ∥ (𝐵 · 𝑦)) → 𝑧 ∥ ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
177, 12, 16syl2and 293 . . . . . . . . . 10 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → ((𝑧𝐴𝑧𝐵) → 𝑧 ∥ ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
18 simpr 109 . . . . . . . . . . 11 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
1918breq2d 3973 . . . . . . . . . 10 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → (𝑧𝑑𝑧 ∥ ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
2017, 19sylibrd 168 . . . . . . . . 9 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → ((𝑧𝐴𝑧𝐵) → 𝑧𝑑))
21 bi3 118 . . . . . . . . 9 ((𝑧𝑑 → (𝑧𝐴𝑧𝐵)) → (((𝑧𝐴𝑧𝐵) → 𝑧𝑑) → (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵))))
2220, 21syl5com 29 . . . . . . . 8 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → ((𝑧𝑑 → (𝑧𝐴𝑧𝐵)) → (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵))))
2322ex 114 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ((𝑧𝑑 → (𝑧𝐴𝑧𝐵)) → (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)))))
2423rexlimdvva 2579 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ((𝑧𝑑 → (𝑧𝐴𝑧𝐵)) → (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)))))
25 imdistan 441 . . . . . . 7 ((∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ((𝑧𝑑 → (𝑧𝐴𝑧𝐵)) → (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)))) ↔ ((∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ∧ (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ∧ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)))))
26 ancom 264 . . . . . . . 8 (((𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) ↔ (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ∧ (𝑧𝑑 → (𝑧𝐴𝑧𝐵))))
27 ancom 264 . . . . . . . 8 (((𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) ↔ (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ∧ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵))))
2826, 27imbi12i 238 . . . . . . 7 ((((𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → ((𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) ↔ ((∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ∧ (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ∧ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)))))
2925, 28bitr4i 186 . . . . . 6 ((∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ((𝑧𝑑 → (𝑧𝐴𝑧𝐵)) → (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)))) ↔ (((𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → ((𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
3024, 29sylib 121 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) → (((𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → ((𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
3130ralimdva 2521 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) → (∀𝑧 ∈ ℤ ((𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → ∀𝑧 ∈ ℤ ((𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
32 0z 9157 . . . . . 6 0 ∈ ℤ
33 elex2 2725 . . . . . 6 (0 ∈ ℤ → ∃𝑧 𝑧 ∈ ℤ)
3432, 33ax-mp 5 . . . . 5 𝑧 𝑧 ∈ ℤ
35 r19.27mv 3486 . . . . 5 (∃𝑧 𝑧 ∈ ℤ → (∀𝑧 ∈ ℤ ((𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) ↔ (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
3634, 35ax-mp 5 . . . 4 (∀𝑧 ∈ ℤ ((𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) ↔ (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
37 r19.27mv 3486 . . . . 5 (∃𝑧 𝑧 ∈ ℤ → (∀𝑧 ∈ ℤ ((𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) ↔ (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
3834, 37ax-mp 5 . . . 4 (∀𝑧 ∈ ℤ ((𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) ↔ (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
3931, 36, 383imtr3g 203 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) → ((∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
4039reximdva 2556 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
411, 40mpd 13 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1332  wex 1469  wcel 2125  wral 2432  wrex 2433   class class class wbr 3961  (class class class)co 5814  0cc0 7711   + caddc 7714   · cmul 7716  0cn0 9069  cz 9146  cdvds 11660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-coll 4075  ax-sep 4078  ax-nul 4086  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-iinf 4541  ax-cnex 7802  ax-resscn 7803  ax-1cn 7804  ax-1re 7805  ax-icn 7806  ax-addcl 7807  ax-addrcl 7808  ax-mulcl 7809  ax-mulrcl 7810  ax-addcom 7811  ax-mulcom 7812  ax-addass 7813  ax-mulass 7814  ax-distr 7815  ax-i2m1 7816  ax-0lt1 7817  ax-1rid 7818  ax-0id 7819  ax-rnegex 7820  ax-precex 7821  ax-cnre 7822  ax-pre-ltirr 7823  ax-pre-ltwlin 7824  ax-pre-lttrn 7825  ax-pre-apti 7826  ax-pre-ltadd 7827  ax-pre-mulgt0 7828  ax-pre-mulext 7829  ax-arch 7830
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-nel 2420  df-ral 2437  df-rex 2438  df-reu 2439  df-rmo 2440  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-if 3502  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-iun 3847  df-br 3962  df-opab 4022  df-mpt 4023  df-tr 4059  df-id 4248  df-po 4251  df-iso 4252  df-iord 4321  df-on 4323  df-ilim 4324  df-suc 4326  df-iom 4544  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-f1 5168  df-fo 5169  df-f1o 5170  df-fv 5171  df-riota 5770  df-ov 5817  df-oprab 5818  df-mpo 5819  df-1st 6078  df-2nd 6079  df-recs 6242  df-frec 6328  df-pnf 7893  df-mnf 7894  df-xr 7895  df-ltxr 7896  df-le 7897  df-sub 8027  df-neg 8028  df-reap 8429  df-ap 8436  df-div 8525  df-inn 8813  df-2 8871  df-n0 9070  df-z 9147  df-uz 9419  df-q 9507  df-rp 9539  df-fz 9891  df-fl 10147  df-mod 10200  df-seqfrec 10323  df-exp 10397  df-cj 10719  df-re 10720  df-im 10721  df-rsqrt 10875  df-abs 10876  df-dvds 11661
This theorem is referenced by:  bezoutlemeu  11863  dfgcd3  11866  bezout  11867
  Copyright terms: Public domain W3C validator