ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlembi GIF version

Theorem bezoutlembi 11729
Description: Lemma for Bézout's identity. Like bezoutlembz 11728 but the greatest common divisor condition is a biconditional, not just an implication. (Contributed by Mario Carneiro and Jim Kingdon, 8-Jan-2022.)
Assertion
Ref Expression
bezoutlembi ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
Distinct variable groups:   𝐴,𝑑,𝑥,𝑦,𝑧   𝐵,𝑑,𝑥,𝑦,𝑧

Proof of Theorem bezoutlembi
StepHypRef Expression
1 bezoutlembz 11728 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
2 simpllr 524 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → 𝑧 ∈ ℤ)
3 simpll 519 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) → 𝐴 ∈ ℤ)
43ad3antrrr 484 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → 𝐴 ∈ ℤ)
5 simplrl 525 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → 𝑥 ∈ ℤ)
6 dvdsmultr1 11567 . . . . . . . . . . . 12 ((𝑧 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑧𝐴𝑧 ∥ (𝐴 · 𝑥)))
72, 4, 5, 6syl3anc 1217 . . . . . . . . . . 11 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → (𝑧𝐴𝑧 ∥ (𝐴 · 𝑥)))
8 simplr 520 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) → 𝐵 ∈ ℤ)
98ad3antrrr 484 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → 𝐵 ∈ ℤ)
10 simplrr 526 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → 𝑦 ∈ ℤ)
11 dvdsmultr1 11567 . . . . . . . . . . . 12 ((𝑧 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑧𝐵𝑧 ∥ (𝐵 · 𝑦)))
122, 9, 10, 11syl3anc 1217 . . . . . . . . . . 11 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → (𝑧𝐵𝑧 ∥ (𝐵 · 𝑦)))
134, 5zmulcld 9203 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → (𝐴 · 𝑥) ∈ ℤ)
149, 10zmulcld 9203 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → (𝐵 · 𝑦) ∈ ℤ)
15 dvds2add 11563 . . . . . . . . . . . 12 ((𝑧 ∈ ℤ ∧ (𝐴 · 𝑥) ∈ ℤ ∧ (𝐵 · 𝑦) ∈ ℤ) → ((𝑧 ∥ (𝐴 · 𝑥) ∧ 𝑧 ∥ (𝐵 · 𝑦)) → 𝑧 ∥ ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
162, 13, 14, 15syl3anc 1217 . . . . . . . . . . 11 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → ((𝑧 ∥ (𝐴 · 𝑥) ∧ 𝑧 ∥ (𝐵 · 𝑦)) → 𝑧 ∥ ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
177, 12, 16syl2and 293 . . . . . . . . . 10 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → ((𝑧𝐴𝑧𝐵) → 𝑧 ∥ ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
18 simpr 109 . . . . . . . . . . 11 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
1918breq2d 3949 . . . . . . . . . 10 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → (𝑧𝑑𝑧 ∥ ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
2017, 19sylibrd 168 . . . . . . . . 9 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → ((𝑧𝐴𝑧𝐵) → 𝑧𝑑))
21 bi3 118 . . . . . . . . 9 ((𝑧𝑑 → (𝑧𝐴𝑧𝐵)) → (((𝑧𝐴𝑧𝐵) → 𝑧𝑑) → (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵))))
2220, 21syl5com 29 . . . . . . . 8 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → ((𝑧𝑑 → (𝑧𝐴𝑧𝐵)) → (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵))))
2322ex 114 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ((𝑧𝑑 → (𝑧𝐴𝑧𝐵)) → (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)))))
2423rexlimdvva 2560 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ((𝑧𝑑 → (𝑧𝐴𝑧𝐵)) → (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)))))
25 imdistan 441 . . . . . . 7 ((∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ((𝑧𝑑 → (𝑧𝐴𝑧𝐵)) → (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)))) ↔ ((∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ∧ (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ∧ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)))))
26 ancom 264 . . . . . . . 8 (((𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) ↔ (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ∧ (𝑧𝑑 → (𝑧𝐴𝑧𝐵))))
27 ancom 264 . . . . . . . 8 (((𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) ↔ (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ∧ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵))))
2826, 27imbi12i 238 . . . . . . 7 ((((𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → ((𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) ↔ ((∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ∧ (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ∧ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)))))
2925, 28bitr4i 186 . . . . . 6 ((∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ((𝑧𝑑 → (𝑧𝐴𝑧𝐵)) → (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)))) ↔ (((𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → ((𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
3024, 29sylib 121 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) → (((𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → ((𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
3130ralimdva 2502 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) → (∀𝑧 ∈ ℤ ((𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → ∀𝑧 ∈ ℤ ((𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
32 0z 9089 . . . . . 6 0 ∈ ℤ
33 elex2 2705 . . . . . 6 (0 ∈ ℤ → ∃𝑧 𝑧 ∈ ℤ)
3432, 33ax-mp 5 . . . . 5 𝑧 𝑧 ∈ ℤ
35 r19.27mv 3464 . . . . 5 (∃𝑧 𝑧 ∈ ℤ → (∀𝑧 ∈ ℤ ((𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) ↔ (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
3634, 35ax-mp 5 . . . 4 (∀𝑧 ∈ ℤ ((𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) ↔ (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
37 r19.27mv 3464 . . . . 5 (∃𝑧 𝑧 ∈ ℤ → (∀𝑧 ∈ ℤ ((𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) ↔ (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
3834, 37ax-mp 5 . . . 4 (∀𝑧 ∈ ℤ ((𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) ↔ (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
3931, 36, 383imtr3g 203 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) → ((∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
4039reximdva 2537 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
411, 40mpd 13 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1332  wex 1469  wcel 1481  wral 2417  wrex 2418   class class class wbr 3937  (class class class)co 5782  0cc0 7644   + caddc 7647   · cmul 7649  0cn0 9001  cz 9078  cdvds 11529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-fz 9822  df-fl 10074  df-mod 10127  df-seqfrec 10250  df-exp 10324  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-dvds 11530
This theorem is referenced by:  bezoutlemeu  11731  dfgcd3  11734  bezout  11735
  Copyright terms: Public domain W3C validator