ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlembi GIF version

Theorem bezoutlembi 12521
Description: Lemma for Bézout's identity. Like bezoutlembz 12520 but the greatest common divisor condition is a biconditional, not just an implication. (Contributed by Mario Carneiro and Jim Kingdon, 8-Jan-2022.)
Assertion
Ref Expression
bezoutlembi ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
Distinct variable groups:   𝐴,𝑑,𝑥,𝑦,𝑧   𝐵,𝑑,𝑥,𝑦,𝑧

Proof of Theorem bezoutlembi
StepHypRef Expression
1 bezoutlembz 12520 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
2 simpllr 534 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → 𝑧 ∈ ℤ)
3 simpll 527 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) → 𝐴 ∈ ℤ)
43ad3antrrr 492 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → 𝐴 ∈ ℤ)
5 simplrl 535 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → 𝑥 ∈ ℤ)
6 dvdsmultr1 12337 . . . . . . . . . . . 12 ((𝑧 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑧𝐴𝑧 ∥ (𝐴 · 𝑥)))
72, 4, 5, 6syl3anc 1271 . . . . . . . . . . 11 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → (𝑧𝐴𝑧 ∥ (𝐴 · 𝑥)))
8 simplr 528 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) → 𝐵 ∈ ℤ)
98ad3antrrr 492 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → 𝐵 ∈ ℤ)
10 simplrr 536 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → 𝑦 ∈ ℤ)
11 dvdsmultr1 12337 . . . . . . . . . . . 12 ((𝑧 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑧𝐵𝑧 ∥ (𝐵 · 𝑦)))
122, 9, 10, 11syl3anc 1271 . . . . . . . . . . 11 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → (𝑧𝐵𝑧 ∥ (𝐵 · 𝑦)))
134, 5zmulcld 9571 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → (𝐴 · 𝑥) ∈ ℤ)
149, 10zmulcld 9571 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → (𝐵 · 𝑦) ∈ ℤ)
15 dvds2add 12331 . . . . . . . . . . . 12 ((𝑧 ∈ ℤ ∧ (𝐴 · 𝑥) ∈ ℤ ∧ (𝐵 · 𝑦) ∈ ℤ) → ((𝑧 ∥ (𝐴 · 𝑥) ∧ 𝑧 ∥ (𝐵 · 𝑦)) → 𝑧 ∥ ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
162, 13, 14, 15syl3anc 1271 . . . . . . . . . . 11 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → ((𝑧 ∥ (𝐴 · 𝑥) ∧ 𝑧 ∥ (𝐵 · 𝑦)) → 𝑧 ∥ ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
177, 12, 16syl2and 295 . . . . . . . . . 10 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → ((𝑧𝐴𝑧𝐵) → 𝑧 ∥ ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
18 simpr 110 . . . . . . . . . . 11 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
1918breq2d 4094 . . . . . . . . . 10 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → (𝑧𝑑𝑧 ∥ ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
2017, 19sylibrd 169 . . . . . . . . 9 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → ((𝑧𝐴𝑧𝐵) → 𝑧𝑑))
21 bi3 119 . . . . . . . . 9 ((𝑧𝑑 → (𝑧𝐴𝑧𝐵)) → (((𝑧𝐴𝑧𝐵) → 𝑧𝑑) → (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵))))
2220, 21syl5com 29 . . . . . . . 8 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → ((𝑧𝑑 → (𝑧𝐴𝑧𝐵)) → (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵))))
2322ex 115 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ((𝑧𝑑 → (𝑧𝐴𝑧𝐵)) → (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)))))
2423rexlimdvva 2656 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ((𝑧𝑑 → (𝑧𝐴𝑧𝐵)) → (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)))))
25 imdistan 444 . . . . . . 7 ((∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ((𝑧𝑑 → (𝑧𝐴𝑧𝐵)) → (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)))) ↔ ((∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ∧ (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ∧ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)))))
26 ancom 266 . . . . . . . 8 (((𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) ↔ (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ∧ (𝑧𝑑 → (𝑧𝐴𝑧𝐵))))
27 ancom 266 . . . . . . . 8 (((𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) ↔ (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ∧ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵))))
2826, 27imbi12i 239 . . . . . . 7 ((((𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → ((𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) ↔ ((∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ∧ (𝑧𝑑 → (𝑧𝐴𝑧𝐵))) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ∧ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)))))
2925, 28bitr4i 187 . . . . . 6 ((∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ((𝑧𝑑 → (𝑧𝐴𝑧𝐵)) → (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)))) ↔ (((𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → ((𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
3024, 29sylib 122 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) → (((𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → ((𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
3130ralimdva 2597 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) → (∀𝑧 ∈ ℤ ((𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → ∀𝑧 ∈ ℤ ((𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
32 0z 9453 . . . . . 6 0 ∈ ℤ
33 elex2 2816 . . . . . 6 (0 ∈ ℤ → ∃𝑧 𝑧 ∈ ℤ)
3432, 33ax-mp 5 . . . . 5 𝑧 𝑧 ∈ ℤ
35 r19.27mv 3588 . . . . 5 (∃𝑧 𝑧 ∈ ℤ → (∀𝑧 ∈ ℤ ((𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) ↔ (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
3634, 35ax-mp 5 . . . 4 (∀𝑧 ∈ ℤ ((𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) ↔ (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
37 r19.27mv 3588 . . . . 5 (∃𝑧 𝑧 ∈ ℤ → (∀𝑧 ∈ ℤ ((𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) ↔ (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
3834, 37ax-mp 5 . . . 4 (∀𝑧 ∈ ℤ ((𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) ↔ (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
3931, 36, 383imtr3g 204 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) → ((∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
4039reximdva 2632 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
411, 40mpd 13 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wex 1538  wcel 2200  wral 2508  wrex 2509   class class class wbr 4082  (class class class)co 6000  0cc0 7995   + caddc 7998   · cmul 8000  0cn0 9365  cz 9442  cdvds 12293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-fz 10201  df-fl 10485  df-mod 10540  df-seqfrec 10665  df-exp 10756  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505  df-dvds 12294
This theorem is referenced by:  bezoutlemeu  12523  dfgcd3  12526  bezout  12527
  Copyright terms: Public domain W3C validator