| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > impel | GIF version | ||
| Description: An inference for implication elimination. (Contributed by Giovanni Mascellani, 23-May-2019.) (Proof shortened by Wolf Lammen, 2-Sep-2020.) |
| Ref | Expression |
|---|---|
| impel.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| impel.2 | ⊢ (𝜃 → 𝜓) |
| Ref | Expression |
|---|---|
| impel | ⊢ ((𝜑 ∧ 𝜃) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impel.2 | . . 3 ⊢ (𝜃 → 𝜓) | |
| 2 | impel.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | syl5 32 | . 2 ⊢ (𝜑 → (𝜃 → 𝜒)) |
| 4 | 3 | imp 124 | 1 ⊢ ((𝜑 ∧ 𝜃) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem is referenced by: pm4.55dc 940 fiintim 7001 eqinfti 7095 finomni 7215 frecuzrdgrclt 10524 seq3coll 10951 fprodsplitsn 11815 nninfctlemfo 12232 unct 12684 isnzr2 13816 dvcnp2cntop 15019 fsumdvdsmul 15311 perfectlem2 15320 |
| Copyright terms: Public domain | W3C validator |