ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  impel GIF version

Theorem impel 280
Description: An inference for implication elimination. (Contributed by Giovanni Mascellani, 23-May-2019.) (Proof shortened by Wolf Lammen, 2-Sep-2020.)
Hypotheses
Ref Expression
impel.1 (𝜑 → (𝜓𝜒))
impel.2 (𝜃𝜓)
Assertion
Ref Expression
impel ((𝜑𝜃) → 𝜒)

Proof of Theorem impel
StepHypRef Expression
1 impel.2 . . 3 (𝜃𝜓)
2 impel.1 . . 3 (𝜑 → (𝜓𝜒))
31, 2syl5 32 . 2 (𝜑 → (𝜃𝜒))
43imp 124 1 ((𝜑𝜃) → 𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem is referenced by:  pm4.55dc  941  fiintim  7043  eqinfti  7137  finomni  7257  frecuzrdgrclt  10582  seq3coll  11009  swrdswrd  11181  fprodsplitsn  12019  nninfctlemfo  12436  unct  12888  isnzr2  14021  dvcnp2cntop  15246  fsumdvdsmul  15538  perfectlem2  15547
  Copyright terms: Public domain W3C validator