ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  impel GIF version

Theorem impel 280
Description: An inference for implication elimination. (Contributed by Giovanni Mascellani, 23-May-2019.) (Proof shortened by Wolf Lammen, 2-Sep-2020.)
Hypotheses
Ref Expression
impel.1 (𝜑 → (𝜓𝜒))
impel.2 (𝜃𝜓)
Assertion
Ref Expression
impel ((𝜑𝜃) → 𝜒)

Proof of Theorem impel
StepHypRef Expression
1 impel.2 . . 3 (𝜃𝜓)
2 impel.1 . . 3 (𝜑 → (𝜓𝜒))
31, 2syl5 32 . 2 (𝜑 → (𝜃𝜒))
43imp 124 1 ((𝜑𝜃) → 𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem is referenced by:  pm4.55dc  944  fiintim  7089  eqinfti  7183  finomni  7303  frecuzrdgrclt  10632  seq3coll  11059  swrdswrd  11232  swrdccatin1  11252  swrdccatin2  11256  fprodsplitsn  12139  nninfctlemfo  12556  unct  13008  isnzr2  14142  dvcnp2cntop  15367  fsumdvdsmul  15659  perfectlem2  15668
  Copyright terms: Public domain W3C validator