| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > impel | GIF version | ||
| Description: An inference for implication elimination. (Contributed by Giovanni Mascellani, 23-May-2019.) (Proof shortened by Wolf Lammen, 2-Sep-2020.) |
| Ref | Expression |
|---|---|
| impel.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| impel.2 | ⊢ (𝜃 → 𝜓) |
| Ref | Expression |
|---|---|
| impel | ⊢ ((𝜑 ∧ 𝜃) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impel.2 | . . 3 ⊢ (𝜃 → 𝜓) | |
| 2 | impel.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | syl5 32 | . 2 ⊢ (𝜑 → (𝜃 → 𝜒)) |
| 4 | 3 | imp 124 | 1 ⊢ ((𝜑 ∧ 𝜃) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem is referenced by: pm4.55dc 944 fiintim 7089 eqinfti 7183 finomni 7303 frecuzrdgrclt 10632 seq3coll 11059 swrdswrd 11232 swrdccatin1 11252 swrdccatin2 11256 fprodsplitsn 12139 nninfctlemfo 12556 unct 13008 isnzr2 14142 dvcnp2cntop 15367 fsumdvdsmul 15659 perfectlem2 15668 |
| Copyright terms: Public domain | W3C validator |