ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unct GIF version

Theorem unct 11991
Description: The union of two countable sets is countable. Corollary 8.1.20 of [AczelRathjen], p. 75. (Contributed by Jim Kingdon, 1-Nov-2023.)
Assertion
Ref Expression
unct ((∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o)) → ∃ :ω–onto→((𝐴𝐵) ⊔ 1o))
Distinct variable groups:   𝐴,𝑓,𝑔,   𝐵,𝑓,𝑔,

Proof of Theorem unct
Dummy variables 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2onn 6425 . . . . . . . 8 2o ∈ ω
2 nnfi 6774 . . . . . . . 8 (2o ∈ ω → 2o ∈ Fin)
3 finct 7009 . . . . . . . 8 (2o ∈ Fin → ∃𝑗 𝑗:ω–onto→(2o ⊔ 1o))
41, 2, 3mp2b 8 . . . . . . 7 𝑗 𝑗:ω–onto→(2o ⊔ 1o)
54a1i 9 . . . . . 6 ((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) → ∃𝑗 𝑗:ω–onto→(2o ⊔ 1o))
6 simpr 109 . . . . . . . . 9 (((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) → 𝑗:ω–onto→(2o ⊔ 1o))
7 df2o3 6335 . . . . . . . . . 10 2o = {∅, 1o}
8 djueq1 6933 . . . . . . . . . 10 (2o = {∅, 1o} → (2o ⊔ 1o) = ({∅, 1o} ⊔ 1o))
9 foeq3 5351 . . . . . . . . . 10 ((2o ⊔ 1o) = ({∅, 1o} ⊔ 1o) → (𝑗:ω–onto→(2o ⊔ 1o) ↔ 𝑗:ω–onto→({∅, 1o} ⊔ 1o)))
107, 8, 9mp2b 8 . . . . . . . . 9 (𝑗:ω–onto→(2o ⊔ 1o) ↔ 𝑗:ω–onto→({∅, 1o} ⊔ 1o))
116, 10sylib 121 . . . . . . . 8 (((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) → 𝑗:ω–onto→({∅, 1o} ⊔ 1o))
12 simplll 523 . . . . . . . . . . . 12 ((((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) ∧ 𝑥 = ∅) → 𝑓:ω–onto→(𝐴 ⊔ 1o))
13 iftrue 3484 . . . . . . . . . . . . . 14 (𝑥 = ∅ → if(𝑥 = ∅, 𝑓, 𝑔) = 𝑓)
14 eqidd 2141 . . . . . . . . . . . . . 14 (𝑥 = ∅ → ω = ω)
15 iftrue 3484 . . . . . . . . . . . . . . 15 (𝑥 = ∅ → if(𝑥 = ∅, 𝐴, 𝐵) = 𝐴)
16 djueq1 6933 . . . . . . . . . . . . . . 15 (if(𝑥 = ∅, 𝐴, 𝐵) = 𝐴 → (if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o) = (𝐴 ⊔ 1o))
1715, 16syl 14 . . . . . . . . . . . . . 14 (𝑥 = ∅ → (if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o) = (𝐴 ⊔ 1o))
1813, 14, 17foeq123d 5369 . . . . . . . . . . . . 13 (𝑥 = ∅ → (if(𝑥 = ∅, 𝑓, 𝑔):ω–onto→(if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o) ↔ 𝑓:ω–onto→(𝐴 ⊔ 1o)))
1918adantl 275 . . . . . . . . . . . 12 ((((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) ∧ 𝑥 = ∅) → (if(𝑥 = ∅, 𝑓, 𝑔):ω–onto→(if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o) ↔ 𝑓:ω–onto→(𝐴 ⊔ 1o)))
2012, 19mpbird 166 . . . . . . . . . . 11 ((((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) ∧ 𝑥 = ∅) → if(𝑥 = ∅, 𝑓, 𝑔):ω–onto→(if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o))
2120ex 114 . . . . . . . . . 10 (((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) → (𝑥 = ∅ → if(𝑥 = ∅, 𝑓, 𝑔):ω–onto→(if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o)))
22 simpllr 524 . . . . . . . . . . . 12 ((((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) ∧ 𝑥 = 1o) → 𝑔:ω–onto→(𝐵 ⊔ 1o))
23 1n0 6337 . . . . . . . . . . . . . . . 16 1o ≠ ∅
2423neii 2311 . . . . . . . . . . . . . . 15 ¬ 1o = ∅
25 eqeq1 2147 . . . . . . . . . . . . . . 15 (𝑥 = 1o → (𝑥 = ∅ ↔ 1o = ∅))
2624, 25mtbiri 665 . . . . . . . . . . . . . 14 (𝑥 = 1o → ¬ 𝑥 = ∅)
2726adantl 275 . . . . . . . . . . . . 13 ((((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) ∧ 𝑥 = 1o) → ¬ 𝑥 = ∅)
28 iffalse 3487 . . . . . . . . . . . . . 14 𝑥 = ∅ → if(𝑥 = ∅, 𝑓, 𝑔) = 𝑔)
29 eqidd 2141 . . . . . . . . . . . . . 14 𝑥 = ∅ → ω = ω)
30 iffalse 3487 . . . . . . . . . . . . . . 15 𝑥 = ∅ → if(𝑥 = ∅, 𝐴, 𝐵) = 𝐵)
31 djueq1 6933 . . . . . . . . . . . . . . 15 (if(𝑥 = ∅, 𝐴, 𝐵) = 𝐵 → (if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o) = (𝐵 ⊔ 1o))
3230, 31syl 14 . . . . . . . . . . . . . 14 𝑥 = ∅ → (if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o) = (𝐵 ⊔ 1o))
3328, 29, 32foeq123d 5369 . . . . . . . . . . . . 13 𝑥 = ∅ → (if(𝑥 = ∅, 𝑓, 𝑔):ω–onto→(if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o) ↔ 𝑔:ω–onto→(𝐵 ⊔ 1o)))
3427, 33syl 14 . . . . . . . . . . . 12 ((((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) ∧ 𝑥 = 1o) → (if(𝑥 = ∅, 𝑓, 𝑔):ω–onto→(if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o) ↔ 𝑔:ω–onto→(𝐵 ⊔ 1o)))
3522, 34mpbird 166 . . . . . . . . . . 11 ((((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) ∧ 𝑥 = 1o) → if(𝑥 = ∅, 𝑓, 𝑔):ω–onto→(if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o))
3635ex 114 . . . . . . . . . 10 (((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) → (𝑥 = 1o → if(𝑥 = ∅, 𝑓, 𝑔):ω–onto→(if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o)))
3721, 36jaod 707 . . . . . . . . 9 (((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) → ((𝑥 = ∅ ∨ 𝑥 = 1o) → if(𝑥 = ∅, 𝑓, 𝑔):ω–onto→(if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o)))
38 elpri 3555 . . . . . . . . 9 (𝑥 ∈ {∅, 1o} → (𝑥 = ∅ ∨ 𝑥 = 1o))
3937, 38impel 278 . . . . . . . 8 ((((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) ∧ 𝑥 ∈ {∅, 1o}) → if(𝑥 = ∅, 𝑓, 𝑔):ω–onto→(if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o))
4011, 39ctiunct 11989 . . . . . . 7 (((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) → ∃ :ω–onto→( 𝑥 ∈ {∅, 1o}if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o))
41 0lt2o 6346 . . . . . . . . . 10 ∅ ∈ 2o
42 1lt2o 6347 . . . . . . . . . 10 1o ∈ 2o
4326iffalsed 3489 . . . . . . . . . . 11 (𝑥 = 1o → if(𝑥 = ∅, 𝐴, 𝐵) = 𝐵)
4415, 43iunxprg 3901 . . . . . . . . . 10 ((∅ ∈ 2o ∧ 1o ∈ 2o) → 𝑥 ∈ {∅, 1o}if(𝑥 = ∅, 𝐴, 𝐵) = (𝐴𝐵))
4541, 42, 44mp2an 423 . . . . . . . . 9 𝑥 ∈ {∅, 1o}if(𝑥 = ∅, 𝐴, 𝐵) = (𝐴𝐵)
46 djueq1 6933 . . . . . . . . 9 ( 𝑥 ∈ {∅, 1o}if(𝑥 = ∅, 𝐴, 𝐵) = (𝐴𝐵) → ( 𝑥 ∈ {∅, 1o}if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o) = ((𝐴𝐵) ⊔ 1o))
47 foeq3 5351 . . . . . . . . 9 (( 𝑥 ∈ {∅, 1o}if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o) = ((𝐴𝐵) ⊔ 1o) → (:ω–onto→( 𝑥 ∈ {∅, 1o}if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o) ↔ :ω–onto→((𝐴𝐵) ⊔ 1o)))
4845, 46, 47mp2b 8 . . . . . . . 8 (:ω–onto→( 𝑥 ∈ {∅, 1o}if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o) ↔ :ω–onto→((𝐴𝐵) ⊔ 1o))
4948exbii 1585 . . . . . . 7 (∃ :ω–onto→( 𝑥 ∈ {∅, 1o}if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o) ↔ ∃ :ω–onto→((𝐴𝐵) ⊔ 1o))
5040, 49sylib 121 . . . . . 6 (((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) → ∃ :ω–onto→((𝐴𝐵) ⊔ 1o))
515, 50exlimddv 1871 . . . . 5 ((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) → ∃ :ω–onto→((𝐴𝐵) ⊔ 1o))
5251ex 114 . . . 4 (𝑓:ω–onto→(𝐴 ⊔ 1o) → (𝑔:ω–onto→(𝐵 ⊔ 1o) → ∃ :ω–onto→((𝐴𝐵) ⊔ 1o)))
5352exlimiv 1578 . . 3 (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → (𝑔:ω–onto→(𝐵 ⊔ 1o) → ∃ :ω–onto→((𝐴𝐵) ⊔ 1o)))
5453exlimdv 1792 . 2 (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → (∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o) → ∃ :ω–onto→((𝐴𝐵) ⊔ 1o)))
5554imp 123 1 ((∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o)) → ∃ :ω–onto→((𝐴𝐵) ⊔ 1o))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698   = wceq 1332  wex 1469  wcel 1481  cun 3074  c0 3368  ifcif 3479  {cpr 3533   ciun 3821  ωcom 4512  ontowfo 5129  1oc1o 6314  2oc2o 6315  Fincfn 6642  cdju 6930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-xor 1355  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-1o 6321  df-2o 6322  df-er 6437  df-en 6643  df-fin 6645  df-dju 6931  df-inl 6940  df-inr 6941  df-case 6977  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-fz 9822  df-fl 10074  df-mod 10127  df-seqfrec 10250  df-exp 10324  df-dvds 11530
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator