ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unct GIF version

Theorem unct 12397
Description: The union of two countable sets is countable. Corollary 8.1.20 of [AczelRathjen], p. 75. (Contributed by Jim Kingdon, 1-Nov-2023.)
Assertion
Ref Expression
unct ((∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o)) → ∃ :ω–onto→((𝐴𝐵) ⊔ 1o))
Distinct variable groups:   𝐴,𝑓,𝑔,   𝐵,𝑓,𝑔,

Proof of Theorem unct
Dummy variables 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2onn 6500 . . . . . . . 8 2o ∈ ω
2 nnfi 6850 . . . . . . . 8 (2o ∈ ω → 2o ∈ Fin)
3 finct 7093 . . . . . . . 8 (2o ∈ Fin → ∃𝑗 𝑗:ω–onto→(2o ⊔ 1o))
41, 2, 3mp2b 8 . . . . . . 7 𝑗 𝑗:ω–onto→(2o ⊔ 1o)
54a1i 9 . . . . . 6 ((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) → ∃𝑗 𝑗:ω–onto→(2o ⊔ 1o))
6 simpr 109 . . . . . . . . 9 (((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) → 𝑗:ω–onto→(2o ⊔ 1o))
7 df2o3 6409 . . . . . . . . . 10 2o = {∅, 1o}
8 djueq1 7017 . . . . . . . . . 10 (2o = {∅, 1o} → (2o ⊔ 1o) = ({∅, 1o} ⊔ 1o))
9 foeq3 5418 . . . . . . . . . 10 ((2o ⊔ 1o) = ({∅, 1o} ⊔ 1o) → (𝑗:ω–onto→(2o ⊔ 1o) ↔ 𝑗:ω–onto→({∅, 1o} ⊔ 1o)))
107, 8, 9mp2b 8 . . . . . . . . 9 (𝑗:ω–onto→(2o ⊔ 1o) ↔ 𝑗:ω–onto→({∅, 1o} ⊔ 1o))
116, 10sylib 121 . . . . . . . 8 (((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) → 𝑗:ω–onto→({∅, 1o} ⊔ 1o))
12 simplll 528 . . . . . . . . . . . 12 ((((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) ∧ 𝑥 = ∅) → 𝑓:ω–onto→(𝐴 ⊔ 1o))
13 iftrue 3531 . . . . . . . . . . . . . 14 (𝑥 = ∅ → if(𝑥 = ∅, 𝑓, 𝑔) = 𝑓)
14 eqidd 2171 . . . . . . . . . . . . . 14 (𝑥 = ∅ → ω = ω)
15 iftrue 3531 . . . . . . . . . . . . . . 15 (𝑥 = ∅ → if(𝑥 = ∅, 𝐴, 𝐵) = 𝐴)
16 djueq1 7017 . . . . . . . . . . . . . . 15 (if(𝑥 = ∅, 𝐴, 𝐵) = 𝐴 → (if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o) = (𝐴 ⊔ 1o))
1715, 16syl 14 . . . . . . . . . . . . . 14 (𝑥 = ∅ → (if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o) = (𝐴 ⊔ 1o))
1813, 14, 17foeq123d 5436 . . . . . . . . . . . . 13 (𝑥 = ∅ → (if(𝑥 = ∅, 𝑓, 𝑔):ω–onto→(if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o) ↔ 𝑓:ω–onto→(𝐴 ⊔ 1o)))
1918adantl 275 . . . . . . . . . . . 12 ((((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) ∧ 𝑥 = ∅) → (if(𝑥 = ∅, 𝑓, 𝑔):ω–onto→(if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o) ↔ 𝑓:ω–onto→(𝐴 ⊔ 1o)))
2012, 19mpbird 166 . . . . . . . . . . 11 ((((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) ∧ 𝑥 = ∅) → if(𝑥 = ∅, 𝑓, 𝑔):ω–onto→(if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o))
2120ex 114 . . . . . . . . . 10 (((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) → (𝑥 = ∅ → if(𝑥 = ∅, 𝑓, 𝑔):ω–onto→(if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o)))
22 simpllr 529 . . . . . . . . . . . 12 ((((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) ∧ 𝑥 = 1o) → 𝑔:ω–onto→(𝐵 ⊔ 1o))
23 1n0 6411 . . . . . . . . . . . . . . . 16 1o ≠ ∅
2423neii 2342 . . . . . . . . . . . . . . 15 ¬ 1o = ∅
25 eqeq1 2177 . . . . . . . . . . . . . . 15 (𝑥 = 1o → (𝑥 = ∅ ↔ 1o = ∅))
2624, 25mtbiri 670 . . . . . . . . . . . . . 14 (𝑥 = 1o → ¬ 𝑥 = ∅)
2726adantl 275 . . . . . . . . . . . . 13 ((((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) ∧ 𝑥 = 1o) → ¬ 𝑥 = ∅)
28 iffalse 3534 . . . . . . . . . . . . . 14 𝑥 = ∅ → if(𝑥 = ∅, 𝑓, 𝑔) = 𝑔)
29 eqidd 2171 . . . . . . . . . . . . . 14 𝑥 = ∅ → ω = ω)
30 iffalse 3534 . . . . . . . . . . . . . . 15 𝑥 = ∅ → if(𝑥 = ∅, 𝐴, 𝐵) = 𝐵)
31 djueq1 7017 . . . . . . . . . . . . . . 15 (if(𝑥 = ∅, 𝐴, 𝐵) = 𝐵 → (if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o) = (𝐵 ⊔ 1o))
3230, 31syl 14 . . . . . . . . . . . . . 14 𝑥 = ∅ → (if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o) = (𝐵 ⊔ 1o))
3328, 29, 32foeq123d 5436 . . . . . . . . . . . . 13 𝑥 = ∅ → (if(𝑥 = ∅, 𝑓, 𝑔):ω–onto→(if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o) ↔ 𝑔:ω–onto→(𝐵 ⊔ 1o)))
3427, 33syl 14 . . . . . . . . . . . 12 ((((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) ∧ 𝑥 = 1o) → (if(𝑥 = ∅, 𝑓, 𝑔):ω–onto→(if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o) ↔ 𝑔:ω–onto→(𝐵 ⊔ 1o)))
3522, 34mpbird 166 . . . . . . . . . . 11 ((((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) ∧ 𝑥 = 1o) → if(𝑥 = ∅, 𝑓, 𝑔):ω–onto→(if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o))
3635ex 114 . . . . . . . . . 10 (((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) → (𝑥 = 1o → if(𝑥 = ∅, 𝑓, 𝑔):ω–onto→(if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o)))
3721, 36jaod 712 . . . . . . . . 9 (((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) → ((𝑥 = ∅ ∨ 𝑥 = 1o) → if(𝑥 = ∅, 𝑓, 𝑔):ω–onto→(if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o)))
38 elpri 3606 . . . . . . . . 9 (𝑥 ∈ {∅, 1o} → (𝑥 = ∅ ∨ 𝑥 = 1o))
3937, 38impel 278 . . . . . . . 8 ((((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) ∧ 𝑥 ∈ {∅, 1o}) → if(𝑥 = ∅, 𝑓, 𝑔):ω–onto→(if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o))
4011, 39ctiunct 12395 . . . . . . 7 (((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) → ∃ :ω–onto→( 𝑥 ∈ {∅, 1o}if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o))
41 0lt2o 6420 . . . . . . . . . 10 ∅ ∈ 2o
42 1lt2o 6421 . . . . . . . . . 10 1o ∈ 2o
4326iffalsed 3536 . . . . . . . . . . 11 (𝑥 = 1o → if(𝑥 = ∅, 𝐴, 𝐵) = 𝐵)
4415, 43iunxprg 3953 . . . . . . . . . 10 ((∅ ∈ 2o ∧ 1o ∈ 2o) → 𝑥 ∈ {∅, 1o}if(𝑥 = ∅, 𝐴, 𝐵) = (𝐴𝐵))
4541, 42, 44mp2an 424 . . . . . . . . 9 𝑥 ∈ {∅, 1o}if(𝑥 = ∅, 𝐴, 𝐵) = (𝐴𝐵)
46 djueq1 7017 . . . . . . . . 9 ( 𝑥 ∈ {∅, 1o}if(𝑥 = ∅, 𝐴, 𝐵) = (𝐴𝐵) → ( 𝑥 ∈ {∅, 1o}if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o) = ((𝐴𝐵) ⊔ 1o))
47 foeq3 5418 . . . . . . . . 9 (( 𝑥 ∈ {∅, 1o}if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o) = ((𝐴𝐵) ⊔ 1o) → (:ω–onto→( 𝑥 ∈ {∅, 1o}if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o) ↔ :ω–onto→((𝐴𝐵) ⊔ 1o)))
4845, 46, 47mp2b 8 . . . . . . . 8 (:ω–onto→( 𝑥 ∈ {∅, 1o}if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o) ↔ :ω–onto→((𝐴𝐵) ⊔ 1o))
4948exbii 1598 . . . . . . 7 (∃ :ω–onto→( 𝑥 ∈ {∅, 1o}if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o) ↔ ∃ :ω–onto→((𝐴𝐵) ⊔ 1o))
5040, 49sylib 121 . . . . . 6 (((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) → ∃ :ω–onto→((𝐴𝐵) ⊔ 1o))
515, 50exlimddv 1891 . . . . 5 ((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) → ∃ :ω–onto→((𝐴𝐵) ⊔ 1o))
5251ex 114 . . . 4 (𝑓:ω–onto→(𝐴 ⊔ 1o) → (𝑔:ω–onto→(𝐵 ⊔ 1o) → ∃ :ω–onto→((𝐴𝐵) ⊔ 1o)))
5352exlimiv 1591 . . 3 (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → (𝑔:ω–onto→(𝐵 ⊔ 1o) → ∃ :ω–onto→((𝐴𝐵) ⊔ 1o)))
5453exlimdv 1812 . 2 (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → (∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o) → ∃ :ω–onto→((𝐴𝐵) ⊔ 1o)))
5554imp 123 1 ((∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o)) → ∃ :ω–onto→((𝐴𝐵) ⊔ 1o))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 703   = wceq 1348  wex 1485  wcel 2141  cun 3119  c0 3414  ifcif 3526  {cpr 3584   ciun 3873  ωcom 4574  ontowfo 5196  1oc1o 6388  2oc2o 6389  Fincfn 6718  cdju 7014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-xor 1371  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-1o 6395  df-2o 6396  df-er 6513  df-en 6719  df-fin 6721  df-dju 7015  df-inl 7024  df-inr 7025  df-case 7061  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fl 10226  df-mod 10279  df-seqfrec 10402  df-exp 10476  df-dvds 11750
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator