ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unct GIF version

Theorem unct 12659
Description: The union of two countable sets is countable. Corollary 8.1.20 of [AczelRathjen], p. 75. (Contributed by Jim Kingdon, 1-Nov-2023.)
Assertion
Ref Expression
unct ((∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o)) → ∃ :ω–onto→((𝐴𝐵) ⊔ 1o))
Distinct variable groups:   𝐴,𝑓,𝑔,   𝐵,𝑓,𝑔,

Proof of Theorem unct
Dummy variables 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2onn 6579 . . . . . . . 8 2o ∈ ω
2 nnfi 6933 . . . . . . . 8 (2o ∈ ω → 2o ∈ Fin)
3 finct 7182 . . . . . . . 8 (2o ∈ Fin → ∃𝑗 𝑗:ω–onto→(2o ⊔ 1o))
41, 2, 3mp2b 8 . . . . . . 7 𝑗 𝑗:ω–onto→(2o ⊔ 1o)
54a1i 9 . . . . . 6 ((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) → ∃𝑗 𝑗:ω–onto→(2o ⊔ 1o))
6 simpr 110 . . . . . . . . 9 (((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) → 𝑗:ω–onto→(2o ⊔ 1o))
7 df2o3 6488 . . . . . . . . . 10 2o = {∅, 1o}
8 djueq1 7106 . . . . . . . . . 10 (2o = {∅, 1o} → (2o ⊔ 1o) = ({∅, 1o} ⊔ 1o))
9 foeq3 5478 . . . . . . . . . 10 ((2o ⊔ 1o) = ({∅, 1o} ⊔ 1o) → (𝑗:ω–onto→(2o ⊔ 1o) ↔ 𝑗:ω–onto→({∅, 1o} ⊔ 1o)))
107, 8, 9mp2b 8 . . . . . . . . 9 (𝑗:ω–onto→(2o ⊔ 1o) ↔ 𝑗:ω–onto→({∅, 1o} ⊔ 1o))
116, 10sylib 122 . . . . . . . 8 (((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) → 𝑗:ω–onto→({∅, 1o} ⊔ 1o))
12 simplll 533 . . . . . . . . . . . 12 ((((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) ∧ 𝑥 = ∅) → 𝑓:ω–onto→(𝐴 ⊔ 1o))
13 iftrue 3566 . . . . . . . . . . . . . 14 (𝑥 = ∅ → if(𝑥 = ∅, 𝑓, 𝑔) = 𝑓)
14 eqidd 2197 . . . . . . . . . . . . . 14 (𝑥 = ∅ → ω = ω)
15 iftrue 3566 . . . . . . . . . . . . . . 15 (𝑥 = ∅ → if(𝑥 = ∅, 𝐴, 𝐵) = 𝐴)
16 djueq1 7106 . . . . . . . . . . . . . . 15 (if(𝑥 = ∅, 𝐴, 𝐵) = 𝐴 → (if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o) = (𝐴 ⊔ 1o))
1715, 16syl 14 . . . . . . . . . . . . . 14 (𝑥 = ∅ → (if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o) = (𝐴 ⊔ 1o))
1813, 14, 17foeq123d 5497 . . . . . . . . . . . . 13 (𝑥 = ∅ → (if(𝑥 = ∅, 𝑓, 𝑔):ω–onto→(if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o) ↔ 𝑓:ω–onto→(𝐴 ⊔ 1o)))
1918adantl 277 . . . . . . . . . . . 12 ((((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) ∧ 𝑥 = ∅) → (if(𝑥 = ∅, 𝑓, 𝑔):ω–onto→(if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o) ↔ 𝑓:ω–onto→(𝐴 ⊔ 1o)))
2012, 19mpbird 167 . . . . . . . . . . 11 ((((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) ∧ 𝑥 = ∅) → if(𝑥 = ∅, 𝑓, 𝑔):ω–onto→(if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o))
2120ex 115 . . . . . . . . . 10 (((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) → (𝑥 = ∅ → if(𝑥 = ∅, 𝑓, 𝑔):ω–onto→(if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o)))
22 simpllr 534 . . . . . . . . . . . 12 ((((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) ∧ 𝑥 = 1o) → 𝑔:ω–onto→(𝐵 ⊔ 1o))
23 1n0 6490 . . . . . . . . . . . . . . . 16 1o ≠ ∅
2423neii 2369 . . . . . . . . . . . . . . 15 ¬ 1o = ∅
25 eqeq1 2203 . . . . . . . . . . . . . . 15 (𝑥 = 1o → (𝑥 = ∅ ↔ 1o = ∅))
2624, 25mtbiri 676 . . . . . . . . . . . . . 14 (𝑥 = 1o → ¬ 𝑥 = ∅)
2726adantl 277 . . . . . . . . . . . . 13 ((((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) ∧ 𝑥 = 1o) → ¬ 𝑥 = ∅)
28 iffalse 3569 . . . . . . . . . . . . . 14 𝑥 = ∅ → if(𝑥 = ∅, 𝑓, 𝑔) = 𝑔)
29 eqidd 2197 . . . . . . . . . . . . . 14 𝑥 = ∅ → ω = ω)
30 iffalse 3569 . . . . . . . . . . . . . . 15 𝑥 = ∅ → if(𝑥 = ∅, 𝐴, 𝐵) = 𝐵)
31 djueq1 7106 . . . . . . . . . . . . . . 15 (if(𝑥 = ∅, 𝐴, 𝐵) = 𝐵 → (if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o) = (𝐵 ⊔ 1o))
3230, 31syl 14 . . . . . . . . . . . . . 14 𝑥 = ∅ → (if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o) = (𝐵 ⊔ 1o))
3328, 29, 32foeq123d 5497 . . . . . . . . . . . . 13 𝑥 = ∅ → (if(𝑥 = ∅, 𝑓, 𝑔):ω–onto→(if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o) ↔ 𝑔:ω–onto→(𝐵 ⊔ 1o)))
3427, 33syl 14 . . . . . . . . . . . 12 ((((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) ∧ 𝑥 = 1o) → (if(𝑥 = ∅, 𝑓, 𝑔):ω–onto→(if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o) ↔ 𝑔:ω–onto→(𝐵 ⊔ 1o)))
3522, 34mpbird 167 . . . . . . . . . . 11 ((((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) ∧ 𝑥 = 1o) → if(𝑥 = ∅, 𝑓, 𝑔):ω–onto→(if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o))
3635ex 115 . . . . . . . . . 10 (((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) → (𝑥 = 1o → if(𝑥 = ∅, 𝑓, 𝑔):ω–onto→(if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o)))
3721, 36jaod 718 . . . . . . . . 9 (((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) → ((𝑥 = ∅ ∨ 𝑥 = 1o) → if(𝑥 = ∅, 𝑓, 𝑔):ω–onto→(if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o)))
38 elpri 3645 . . . . . . . . 9 (𝑥 ∈ {∅, 1o} → (𝑥 = ∅ ∨ 𝑥 = 1o))
3937, 38impel 280 . . . . . . . 8 ((((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) ∧ 𝑥 ∈ {∅, 1o}) → if(𝑥 = ∅, 𝑓, 𝑔):ω–onto→(if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o))
4011, 39ctiunct 12657 . . . . . . 7 (((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) → ∃ :ω–onto→( 𝑥 ∈ {∅, 1o}if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o))
41 0lt2o 6499 . . . . . . . . . 10 ∅ ∈ 2o
42 1lt2o 6500 . . . . . . . . . 10 1o ∈ 2o
4326iffalsed 3571 . . . . . . . . . . 11 (𝑥 = 1o → if(𝑥 = ∅, 𝐴, 𝐵) = 𝐵)
4415, 43iunxprg 3997 . . . . . . . . . 10 ((∅ ∈ 2o ∧ 1o ∈ 2o) → 𝑥 ∈ {∅, 1o}if(𝑥 = ∅, 𝐴, 𝐵) = (𝐴𝐵))
4541, 42, 44mp2an 426 . . . . . . . . 9 𝑥 ∈ {∅, 1o}if(𝑥 = ∅, 𝐴, 𝐵) = (𝐴𝐵)
46 djueq1 7106 . . . . . . . . 9 ( 𝑥 ∈ {∅, 1o}if(𝑥 = ∅, 𝐴, 𝐵) = (𝐴𝐵) → ( 𝑥 ∈ {∅, 1o}if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o) = ((𝐴𝐵) ⊔ 1o))
47 foeq3 5478 . . . . . . . . 9 (( 𝑥 ∈ {∅, 1o}if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o) = ((𝐴𝐵) ⊔ 1o) → (:ω–onto→( 𝑥 ∈ {∅, 1o}if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o) ↔ :ω–onto→((𝐴𝐵) ⊔ 1o)))
4845, 46, 47mp2b 8 . . . . . . . 8 (:ω–onto→( 𝑥 ∈ {∅, 1o}if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o) ↔ :ω–onto→((𝐴𝐵) ⊔ 1o))
4948exbii 1619 . . . . . . 7 (∃ :ω–onto→( 𝑥 ∈ {∅, 1o}if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o) ↔ ∃ :ω–onto→((𝐴𝐵) ⊔ 1o))
5040, 49sylib 122 . . . . . 6 (((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) → ∃ :ω–onto→((𝐴𝐵) ⊔ 1o))
515, 50exlimddv 1913 . . . . 5 ((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) → ∃ :ω–onto→((𝐴𝐵) ⊔ 1o))
5251ex 115 . . . 4 (𝑓:ω–onto→(𝐴 ⊔ 1o) → (𝑔:ω–onto→(𝐵 ⊔ 1o) → ∃ :ω–onto→((𝐴𝐵) ⊔ 1o)))
5352exlimiv 1612 . . 3 (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → (𝑔:ω–onto→(𝐵 ⊔ 1o) → ∃ :ω–onto→((𝐴𝐵) ⊔ 1o)))
5453exlimdv 1833 . 2 (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → (∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o) → ∃ :ω–onto→((𝐴𝐵) ⊔ 1o)))
5554imp 124 1 ((∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o)) → ∃ :ω–onto→((𝐴𝐵) ⊔ 1o))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wex 1506  wcel 2167  cun 3155  c0 3450  ifcif 3561  {cpr 3623   ciun 3916  ωcom 4626  ontowfo 5256  1oc1o 6467  2oc2o 6468  Fincfn 6799  cdju 7103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-1o 6474  df-2o 6475  df-er 6592  df-en 6800  df-fin 6802  df-dju 7104  df-inl 7113  df-inr 7114  df-case 7150  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fl 10360  df-mod 10415  df-seqfrec 10540  df-exp 10631  df-dvds 11953
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator