Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  unct GIF version

Theorem unct 11962
 Description: The union of two countable sets is countable. Corollary 8.1.20 of [AczelRathjen], p. 75. (Contributed by Jim Kingdon, 1-Nov-2023.)
Assertion
Ref Expression
unct ((∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o)) → ∃ :ω–onto→((𝐴𝐵) ⊔ 1o))
Distinct variable groups:   𝐴,𝑓,𝑔,   𝐵,𝑓,𝑔,

Proof of Theorem unct
Dummy variables 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2onn 6417 . . . . . . . 8 2o ∈ ω
2 nnfi 6766 . . . . . . . 8 (2o ∈ ω → 2o ∈ Fin)
3 finct 7001 . . . . . . . 8 (2o ∈ Fin → ∃𝑗 𝑗:ω–onto→(2o ⊔ 1o))
41, 2, 3mp2b 8 . . . . . . 7 𝑗 𝑗:ω–onto→(2o ⊔ 1o)
54a1i 9 . . . . . 6 ((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) → ∃𝑗 𝑗:ω–onto→(2o ⊔ 1o))
6 simpr 109 . . . . . . . . 9 (((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) → 𝑗:ω–onto→(2o ⊔ 1o))
7 df2o3 6327 . . . . . . . . . 10 2o = {∅, 1o}
8 djueq1 6925 . . . . . . . . . 10 (2o = {∅, 1o} → (2o ⊔ 1o) = ({∅, 1o} ⊔ 1o))
9 foeq3 5343 . . . . . . . . . 10 ((2o ⊔ 1o) = ({∅, 1o} ⊔ 1o) → (𝑗:ω–onto→(2o ⊔ 1o) ↔ 𝑗:ω–onto→({∅, 1o} ⊔ 1o)))
107, 8, 9mp2b 8 . . . . . . . . 9 (𝑗:ω–onto→(2o ⊔ 1o) ↔ 𝑗:ω–onto→({∅, 1o} ⊔ 1o))
116, 10sylib 121 . . . . . . . 8 (((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) → 𝑗:ω–onto→({∅, 1o} ⊔ 1o))
12 simplll 522 . . . . . . . . . . . 12 ((((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) ∧ 𝑥 = ∅) → 𝑓:ω–onto→(𝐴 ⊔ 1o))
13 iftrue 3479 . . . . . . . . . . . . . 14 (𝑥 = ∅ → if(𝑥 = ∅, 𝑓, 𝑔) = 𝑓)
14 eqidd 2140 . . . . . . . . . . . . . 14 (𝑥 = ∅ → ω = ω)
15 iftrue 3479 . . . . . . . . . . . . . . 15 (𝑥 = ∅ → if(𝑥 = ∅, 𝐴, 𝐵) = 𝐴)
16 djueq1 6925 . . . . . . . . . . . . . . 15 (if(𝑥 = ∅, 𝐴, 𝐵) = 𝐴 → (if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o) = (𝐴 ⊔ 1o))
1715, 16syl 14 . . . . . . . . . . . . . 14 (𝑥 = ∅ → (if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o) = (𝐴 ⊔ 1o))
1813, 14, 17foeq123d 5361 . . . . . . . . . . . . 13 (𝑥 = ∅ → (if(𝑥 = ∅, 𝑓, 𝑔):ω–onto→(if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o) ↔ 𝑓:ω–onto→(𝐴 ⊔ 1o)))
1918adantl 275 . . . . . . . . . . . 12 ((((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) ∧ 𝑥 = ∅) → (if(𝑥 = ∅, 𝑓, 𝑔):ω–onto→(if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o) ↔ 𝑓:ω–onto→(𝐴 ⊔ 1o)))
2012, 19mpbird 166 . . . . . . . . . . 11 ((((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) ∧ 𝑥 = ∅) → if(𝑥 = ∅, 𝑓, 𝑔):ω–onto→(if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o))
2120ex 114 . . . . . . . . . 10 (((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) → (𝑥 = ∅ → if(𝑥 = ∅, 𝑓, 𝑔):ω–onto→(if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o)))
22 simpllr 523 . . . . . . . . . . . 12 ((((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) ∧ 𝑥 = 1o) → 𝑔:ω–onto→(𝐵 ⊔ 1o))
23 1n0 6329 . . . . . . . . . . . . . . . 16 1o ≠ ∅
2423neii 2310 . . . . . . . . . . . . . . 15 ¬ 1o = ∅
25 eqeq1 2146 . . . . . . . . . . . . . . 15 (𝑥 = 1o → (𝑥 = ∅ ↔ 1o = ∅))
2624, 25mtbiri 664 . . . . . . . . . . . . . 14 (𝑥 = 1o → ¬ 𝑥 = ∅)
2726adantl 275 . . . . . . . . . . . . 13 ((((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) ∧ 𝑥 = 1o) → ¬ 𝑥 = ∅)
28 iffalse 3482 . . . . . . . . . . . . . 14 𝑥 = ∅ → if(𝑥 = ∅, 𝑓, 𝑔) = 𝑔)
29 eqidd 2140 . . . . . . . . . . . . . 14 𝑥 = ∅ → ω = ω)
30 iffalse 3482 . . . . . . . . . . . . . . 15 𝑥 = ∅ → if(𝑥 = ∅, 𝐴, 𝐵) = 𝐵)
31 djueq1 6925 . . . . . . . . . . . . . . 15 (if(𝑥 = ∅, 𝐴, 𝐵) = 𝐵 → (if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o) = (𝐵 ⊔ 1o))
3230, 31syl 14 . . . . . . . . . . . . . 14 𝑥 = ∅ → (if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o) = (𝐵 ⊔ 1o))
3328, 29, 32foeq123d 5361 . . . . . . . . . . . . 13 𝑥 = ∅ → (if(𝑥 = ∅, 𝑓, 𝑔):ω–onto→(if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o) ↔ 𝑔:ω–onto→(𝐵 ⊔ 1o)))
3427, 33syl 14 . . . . . . . . . . . 12 ((((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) ∧ 𝑥 = 1o) → (if(𝑥 = ∅, 𝑓, 𝑔):ω–onto→(if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o) ↔ 𝑔:ω–onto→(𝐵 ⊔ 1o)))
3522, 34mpbird 166 . . . . . . . . . . 11 ((((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) ∧ 𝑥 = 1o) → if(𝑥 = ∅, 𝑓, 𝑔):ω–onto→(if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o))
3635ex 114 . . . . . . . . . 10 (((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) → (𝑥 = 1o → if(𝑥 = ∅, 𝑓, 𝑔):ω–onto→(if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o)))
3721, 36jaod 706 . . . . . . . . 9 (((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) → ((𝑥 = ∅ ∨ 𝑥 = 1o) → if(𝑥 = ∅, 𝑓, 𝑔):ω–onto→(if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o)))
38 elpri 3550 . . . . . . . . 9 (𝑥 ∈ {∅, 1o} → (𝑥 = ∅ ∨ 𝑥 = 1o))
3937, 38impel 278 . . . . . . . 8 ((((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) ∧ 𝑥 ∈ {∅, 1o}) → if(𝑥 = ∅, 𝑓, 𝑔):ω–onto→(if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o))
4011, 39ctiunct 11960 . . . . . . 7 (((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) → ∃ :ω–onto→( 𝑥 ∈ {∅, 1o}if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o))
41 0lt2o 6338 . . . . . . . . . 10 ∅ ∈ 2o
42 1lt2o 6339 . . . . . . . . . 10 1o ∈ 2o
4326iffalsed 3484 . . . . . . . . . . 11 (𝑥 = 1o → if(𝑥 = ∅, 𝐴, 𝐵) = 𝐵)
4415, 43iunxprg 3893 . . . . . . . . . 10 ((∅ ∈ 2o ∧ 1o ∈ 2o) → 𝑥 ∈ {∅, 1o}if(𝑥 = ∅, 𝐴, 𝐵) = (𝐴𝐵))
4541, 42, 44mp2an 422 . . . . . . . . 9 𝑥 ∈ {∅, 1o}if(𝑥 = ∅, 𝐴, 𝐵) = (𝐴𝐵)
46 djueq1 6925 . . . . . . . . 9 ( 𝑥 ∈ {∅, 1o}if(𝑥 = ∅, 𝐴, 𝐵) = (𝐴𝐵) → ( 𝑥 ∈ {∅, 1o}if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o) = ((𝐴𝐵) ⊔ 1o))
47 foeq3 5343 . . . . . . . . 9 (( 𝑥 ∈ {∅, 1o}if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o) = ((𝐴𝐵) ⊔ 1o) → (:ω–onto→( 𝑥 ∈ {∅, 1o}if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o) ↔ :ω–onto→((𝐴𝐵) ⊔ 1o)))
4845, 46, 47mp2b 8 . . . . . . . 8 (:ω–onto→( 𝑥 ∈ {∅, 1o}if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o) ↔ :ω–onto→((𝐴𝐵) ⊔ 1o))
4948exbii 1584 . . . . . . 7 (∃ :ω–onto→( 𝑥 ∈ {∅, 1o}if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o) ↔ ∃ :ω–onto→((𝐴𝐵) ⊔ 1o))
5040, 49sylib 121 . . . . . 6 (((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) → ∃ :ω–onto→((𝐴𝐵) ⊔ 1o))
515, 50exlimddv 1870 . . . . 5 ((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) → ∃ :ω–onto→((𝐴𝐵) ⊔ 1o))
5251ex 114 . . . 4 (𝑓:ω–onto→(𝐴 ⊔ 1o) → (𝑔:ω–onto→(𝐵 ⊔ 1o) → ∃ :ω–onto→((𝐴𝐵) ⊔ 1o)))
5352exlimiv 1577 . . 3 (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → (𝑔:ω–onto→(𝐵 ⊔ 1o) → ∃ :ω–onto→((𝐴𝐵) ⊔ 1o)))
5453exlimdv 1791 . 2 (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → (∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o) → ∃ :ω–onto→((𝐴𝐵) ⊔ 1o)))
5554imp 123 1 ((∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o)) → ∃ :ω–onto→((𝐴𝐵) ⊔ 1o))
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 103   ↔ wb 104   ∨ wo 697   = wceq 1331  ∃wex 1468   ∈ wcel 1480   ∪ cun 3069  ∅c0 3363  ifcif 3474  {cpr 3528  ∪ ciun 3813  ωcom 4504  –onto→wfo 5121  1oc1o 6306  2oc2o 6307  Fincfn 6634   ⊔ cdju 6922 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7718  ax-resscn 7719  ax-1cn 7720  ax-1re 7721  ax-icn 7722  ax-addcl 7723  ax-addrcl 7724  ax-mulcl 7725  ax-mulrcl 7726  ax-addcom 7727  ax-mulcom 7728  ax-addass 7729  ax-mulass 7730  ax-distr 7731  ax-i2m1 7732  ax-0lt1 7733  ax-1rid 7734  ax-0id 7735  ax-rnegex 7736  ax-precex 7737  ax-cnre 7738  ax-pre-ltirr 7739  ax-pre-ltwlin 7740  ax-pre-lttrn 7741  ax-pre-apti 7742  ax-pre-ltadd 7743  ax-pre-mulgt0 7744  ax-pre-mulext 7745  ax-arch 7746 This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-xor 1354  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-1o 6313  df-2o 6314  df-er 6429  df-en 6635  df-fin 6637  df-dju 6923  df-inl 6932  df-inr 6933  df-case 6969  df-pnf 7809  df-mnf 7810  df-xr 7811  df-ltxr 7812  df-le 7813  df-sub 7942  df-neg 7943  df-reap 8344  df-ap 8351  df-div 8440  df-inn 8728  df-2 8786  df-n0 8985  df-z 9062  df-uz 9334  df-q 9419  df-rp 9449  df-fz 9798  df-fl 10050  df-mod 10103  df-seqfrec 10226  df-exp 10300  df-dvds 11501 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator