ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unct GIF version

Theorem unct 13021
Description: The union of two countable sets is countable. Corollary 8.1.20 of [AczelRathjen], p. 75. (Contributed by Jim Kingdon, 1-Nov-2023.)
Assertion
Ref Expression
unct ((∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o)) → ∃ :ω–onto→((𝐴𝐵) ⊔ 1o))
Distinct variable groups:   𝐴,𝑓,𝑔,   𝐵,𝑓,𝑔,

Proof of Theorem unct
Dummy variables 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2onn 6675 . . . . . . . 8 2o ∈ ω
2 nnfi 7042 . . . . . . . 8 (2o ∈ ω → 2o ∈ Fin)
3 finct 7291 . . . . . . . 8 (2o ∈ Fin → ∃𝑗 𝑗:ω–onto→(2o ⊔ 1o))
41, 2, 3mp2b 8 . . . . . . 7 𝑗 𝑗:ω–onto→(2o ⊔ 1o)
54a1i 9 . . . . . 6 ((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) → ∃𝑗 𝑗:ω–onto→(2o ⊔ 1o))
6 simpr 110 . . . . . . . . 9 (((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) → 𝑗:ω–onto→(2o ⊔ 1o))
7 df2o3 6583 . . . . . . . . . 10 2o = {∅, 1o}
8 djueq1 7215 . . . . . . . . . 10 (2o = {∅, 1o} → (2o ⊔ 1o) = ({∅, 1o} ⊔ 1o))
9 foeq3 5548 . . . . . . . . . 10 ((2o ⊔ 1o) = ({∅, 1o} ⊔ 1o) → (𝑗:ω–onto→(2o ⊔ 1o) ↔ 𝑗:ω–onto→({∅, 1o} ⊔ 1o)))
107, 8, 9mp2b 8 . . . . . . . . 9 (𝑗:ω–onto→(2o ⊔ 1o) ↔ 𝑗:ω–onto→({∅, 1o} ⊔ 1o))
116, 10sylib 122 . . . . . . . 8 (((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) → 𝑗:ω–onto→({∅, 1o} ⊔ 1o))
12 simplll 533 . . . . . . . . . . . 12 ((((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) ∧ 𝑥 = ∅) → 𝑓:ω–onto→(𝐴 ⊔ 1o))
13 iftrue 3607 . . . . . . . . . . . . . 14 (𝑥 = ∅ → if(𝑥 = ∅, 𝑓, 𝑔) = 𝑓)
14 eqidd 2230 . . . . . . . . . . . . . 14 (𝑥 = ∅ → ω = ω)
15 iftrue 3607 . . . . . . . . . . . . . . 15 (𝑥 = ∅ → if(𝑥 = ∅, 𝐴, 𝐵) = 𝐴)
16 djueq1 7215 . . . . . . . . . . . . . . 15 (if(𝑥 = ∅, 𝐴, 𝐵) = 𝐴 → (if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o) = (𝐴 ⊔ 1o))
1715, 16syl 14 . . . . . . . . . . . . . 14 (𝑥 = ∅ → (if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o) = (𝐴 ⊔ 1o))
1813, 14, 17foeq123d 5567 . . . . . . . . . . . . 13 (𝑥 = ∅ → (if(𝑥 = ∅, 𝑓, 𝑔):ω–onto→(if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o) ↔ 𝑓:ω–onto→(𝐴 ⊔ 1o)))
1918adantl 277 . . . . . . . . . . . 12 ((((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) ∧ 𝑥 = ∅) → (if(𝑥 = ∅, 𝑓, 𝑔):ω–onto→(if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o) ↔ 𝑓:ω–onto→(𝐴 ⊔ 1o)))
2012, 19mpbird 167 . . . . . . . . . . 11 ((((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) ∧ 𝑥 = ∅) → if(𝑥 = ∅, 𝑓, 𝑔):ω–onto→(if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o))
2120ex 115 . . . . . . . . . 10 (((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) → (𝑥 = ∅ → if(𝑥 = ∅, 𝑓, 𝑔):ω–onto→(if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o)))
22 simpllr 534 . . . . . . . . . . . 12 ((((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) ∧ 𝑥 = 1o) → 𝑔:ω–onto→(𝐵 ⊔ 1o))
23 1n0 6586 . . . . . . . . . . . . . . . 16 1o ≠ ∅
2423neii 2402 . . . . . . . . . . . . . . 15 ¬ 1o = ∅
25 eqeq1 2236 . . . . . . . . . . . . . . 15 (𝑥 = 1o → (𝑥 = ∅ ↔ 1o = ∅))
2624, 25mtbiri 679 . . . . . . . . . . . . . 14 (𝑥 = 1o → ¬ 𝑥 = ∅)
2726adantl 277 . . . . . . . . . . . . 13 ((((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) ∧ 𝑥 = 1o) → ¬ 𝑥 = ∅)
28 iffalse 3610 . . . . . . . . . . . . . 14 𝑥 = ∅ → if(𝑥 = ∅, 𝑓, 𝑔) = 𝑔)
29 eqidd 2230 . . . . . . . . . . . . . 14 𝑥 = ∅ → ω = ω)
30 iffalse 3610 . . . . . . . . . . . . . . 15 𝑥 = ∅ → if(𝑥 = ∅, 𝐴, 𝐵) = 𝐵)
31 djueq1 7215 . . . . . . . . . . . . . . 15 (if(𝑥 = ∅, 𝐴, 𝐵) = 𝐵 → (if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o) = (𝐵 ⊔ 1o))
3230, 31syl 14 . . . . . . . . . . . . . 14 𝑥 = ∅ → (if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o) = (𝐵 ⊔ 1o))
3328, 29, 32foeq123d 5567 . . . . . . . . . . . . 13 𝑥 = ∅ → (if(𝑥 = ∅, 𝑓, 𝑔):ω–onto→(if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o) ↔ 𝑔:ω–onto→(𝐵 ⊔ 1o)))
3427, 33syl 14 . . . . . . . . . . . 12 ((((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) ∧ 𝑥 = 1o) → (if(𝑥 = ∅, 𝑓, 𝑔):ω–onto→(if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o) ↔ 𝑔:ω–onto→(𝐵 ⊔ 1o)))
3522, 34mpbird 167 . . . . . . . . . . 11 ((((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) ∧ 𝑥 = 1o) → if(𝑥 = ∅, 𝑓, 𝑔):ω–onto→(if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o))
3635ex 115 . . . . . . . . . 10 (((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) → (𝑥 = 1o → if(𝑥 = ∅, 𝑓, 𝑔):ω–onto→(if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o)))
3721, 36jaod 722 . . . . . . . . 9 (((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) → ((𝑥 = ∅ ∨ 𝑥 = 1o) → if(𝑥 = ∅, 𝑓, 𝑔):ω–onto→(if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o)))
38 elpri 3689 . . . . . . . . 9 (𝑥 ∈ {∅, 1o} → (𝑥 = ∅ ∨ 𝑥 = 1o))
3937, 38impel 280 . . . . . . . 8 ((((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) ∧ 𝑥 ∈ {∅, 1o}) → if(𝑥 = ∅, 𝑓, 𝑔):ω–onto→(if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o))
4011, 39ctiunct 13019 . . . . . . 7 (((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) → ∃ :ω–onto→( 𝑥 ∈ {∅, 1o}if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o))
41 0lt2o 6595 . . . . . . . . . 10 ∅ ∈ 2o
42 1lt2o 6596 . . . . . . . . . 10 1o ∈ 2o
4326iffalsed 3612 . . . . . . . . . . 11 (𝑥 = 1o → if(𝑥 = ∅, 𝐴, 𝐵) = 𝐵)
4415, 43iunxprg 4046 . . . . . . . . . 10 ((∅ ∈ 2o ∧ 1o ∈ 2o) → 𝑥 ∈ {∅, 1o}if(𝑥 = ∅, 𝐴, 𝐵) = (𝐴𝐵))
4541, 42, 44mp2an 426 . . . . . . . . 9 𝑥 ∈ {∅, 1o}if(𝑥 = ∅, 𝐴, 𝐵) = (𝐴𝐵)
46 djueq1 7215 . . . . . . . . 9 ( 𝑥 ∈ {∅, 1o}if(𝑥 = ∅, 𝐴, 𝐵) = (𝐴𝐵) → ( 𝑥 ∈ {∅, 1o}if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o) = ((𝐴𝐵) ⊔ 1o))
47 foeq3 5548 . . . . . . . . 9 (( 𝑥 ∈ {∅, 1o}if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o) = ((𝐴𝐵) ⊔ 1o) → (:ω–onto→( 𝑥 ∈ {∅, 1o}if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o) ↔ :ω–onto→((𝐴𝐵) ⊔ 1o)))
4845, 46, 47mp2b 8 . . . . . . . 8 (:ω–onto→( 𝑥 ∈ {∅, 1o}if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o) ↔ :ω–onto→((𝐴𝐵) ⊔ 1o))
4948exbii 1651 . . . . . . 7 (∃ :ω–onto→( 𝑥 ∈ {∅, 1o}if(𝑥 = ∅, 𝐴, 𝐵) ⊔ 1o) ↔ ∃ :ω–onto→((𝐴𝐵) ⊔ 1o))
5040, 49sylib 122 . . . . . 6 (((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) ∧ 𝑗:ω–onto→(2o ⊔ 1o)) → ∃ :ω–onto→((𝐴𝐵) ⊔ 1o))
515, 50exlimddv 1945 . . . . 5 ((𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) → ∃ :ω–onto→((𝐴𝐵) ⊔ 1o))
5251ex 115 . . . 4 (𝑓:ω–onto→(𝐴 ⊔ 1o) → (𝑔:ω–onto→(𝐵 ⊔ 1o) → ∃ :ω–onto→((𝐴𝐵) ⊔ 1o)))
5352exlimiv 1644 . . 3 (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → (𝑔:ω–onto→(𝐵 ⊔ 1o) → ∃ :ω–onto→((𝐴𝐵) ⊔ 1o)))
5453exlimdv 1865 . 2 (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → (∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o) → ∃ :ω–onto→((𝐴𝐵) ⊔ 1o)))
5554imp 124 1 ((∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o)) → ∃ :ω–onto→((𝐴𝐵) ⊔ 1o))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 713   = wceq 1395  wex 1538  wcel 2200  cun 3195  c0 3491  ifcif 3602  {cpr 3667   ciun 3965  ωcom 4682  ontowfo 5316  1oc1o 6561  2oc2o 6562  Fincfn 6895  cdju 7212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-xor 1418  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-frec 6543  df-1o 6568  df-2o 6569  df-er 6688  df-en 6896  df-fin 6898  df-dju 7213  df-inl 7222  df-inr 7223  df-case 7259  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-n0 9378  df-z 9455  df-uz 9731  df-q 9823  df-rp 9858  df-fz 10213  df-fl 10498  df-mod 10553  df-seqfrec 10678  df-exp 10769  df-dvds 12307
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator