Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > adantrd | GIF version |
Description: Deduction adding a conjunct to the right of an antecedent. (Contributed by NM, 4-May-1994.) |
Ref | Expression |
---|---|
adantrd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
adantrd | ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . 2 ⊢ ((𝜓 ∧ 𝜃) → 𝜓) | |
2 | adantrd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | syl5 32 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 |
This theorem is referenced by: syldan 280 jaoa 710 prlem1 958 equveli 1739 elssabg 4109 suctr 4381 fvun1 5533 opabbrex 5862 poxp 6176 tposfo2 6211 1idprl 7504 1idpru 7505 uzind 9269 xrlttr 9695 fzen 9938 fz0fzelfz0 10019 fisumss 11282 fprodssdc 11480 zeqzmulgcd 11845 lcmgcdlem 11945 lcmdvds 11947 cncongr2 11972 exprmfct 12005 metrest 12877 bj-charfunbi 13357 bj-om 13483 |
Copyright terms: Public domain | W3C validator |