| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > adantrd | GIF version | ||
| Description: Deduction adding a conjunct to the right of an antecedent. (Contributed by NM, 4-May-1994.) |
| Ref | Expression |
|---|---|
| adantrd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| adantrd | ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 | . 2 ⊢ ((𝜓 ∧ 𝜃) → 𝜓) | |
| 2 | adantrd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | syl5 32 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem is referenced by: syldan 282 jaoa 721 prlem1 975 equveli 1781 elssabg 4191 suctr 4466 fvun1 5639 opabbrex 5979 poxp 6308 tposfo2 6343 1idprl 7685 1idpru 7686 uzind 9466 xrlttr 9899 fzen 10147 fz0fzelfz0 10231 ccatsymb 11033 fisumss 11622 fprodssdc 11820 zeqzmulgcd 12210 lcmgcdlem 12318 lcmdvds 12320 cncongr2 12345 exprmfct 12379 pceu 12537 infpnlem1 12601 isghm 13497 ringadd2 13707 metrest 14896 bj-charfunbi 15611 bj-om 15737 |
| Copyright terms: Public domain | W3C validator |