| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > adantrd | GIF version | ||
| Description: Deduction adding a conjunct to the right of an antecedent. (Contributed by NM, 4-May-1994.) |
| Ref | Expression |
|---|---|
| adantrd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| adantrd | ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 | . 2 ⊢ ((𝜓 ∧ 𝜃) → 𝜓) | |
| 2 | adantrd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | syl5 32 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem is referenced by: syldan 282 jaoa 725 prlem1 979 equveli 1805 elssabg 4231 suctr 4511 fvun1 5699 opabbrex 6047 poxp 6376 tposfo2 6411 1idprl 7773 1idpru 7774 uzind 9554 xrlttr 9987 fzen 10235 fz0fzelfz0 10319 ccatsymb 11132 fisumss 11898 fprodssdc 12096 zeqzmulgcd 12486 lcmgcdlem 12594 lcmdvds 12596 cncongr2 12621 exprmfct 12655 pceu 12813 infpnlem1 12877 isghm 13775 ringadd2 13985 metrest 15174 umgredg 15937 bj-charfunbi 16132 bj-om 16258 |
| Copyright terms: Public domain | W3C validator |