| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > adantrd | GIF version | ||
| Description: Deduction adding a conjunct to the right of an antecedent. (Contributed by NM, 4-May-1994.) |
| Ref | Expression |
|---|---|
| adantrd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| adantrd | ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 | . 2 ⊢ ((𝜓 ∧ 𝜃) → 𝜓) | |
| 2 | adantrd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | syl5 32 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem is referenced by: syldan 282 jaoa 721 prlem1 975 equveli 1781 elssabg 4191 suctr 4467 fvun1 5644 opabbrex 5988 poxp 6317 tposfo2 6352 1idprl 7702 1idpru 7703 uzind 9483 xrlttr 9916 fzen 10164 fz0fzelfz0 10248 ccatsymb 11056 fisumss 11674 fprodssdc 11872 zeqzmulgcd 12262 lcmgcdlem 12370 lcmdvds 12372 cncongr2 12397 exprmfct 12431 pceu 12589 infpnlem1 12653 isghm 13550 ringadd2 13760 metrest 14949 bj-charfunbi 15709 bj-om 15835 |
| Copyright terms: Public domain | W3C validator |