ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  adantrd GIF version

Theorem adantrd 279
Description: Deduction adding a conjunct to the right of an antecedent. (Contributed by NM, 4-May-1994.)
Hypothesis
Ref Expression
adantrd.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
adantrd (𝜑 → ((𝜓𝜃) → 𝜒))

Proof of Theorem adantrd
StepHypRef Expression
1 simpl 109 . 2 ((𝜓𝜃) → 𝜓)
2 adantrd.1 . 2 (𝜑 → (𝜓𝜒))
31, 2syl5 32 1 (𝜑 → ((𝜓𝜃) → 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem is referenced by:  syldan  282  jaoa  721  prlem1  975  equveli  1773  elssabg  4182  suctr  4457  fvun1  5630  opabbrex  5970  poxp  6299  tposfo2  6334  1idprl  7676  1idpru  7677  uzind  9456  xrlttr  9889  fzen  10137  fz0fzelfz0  10221  fisumss  11576  fprodssdc  11774  zeqzmulgcd  12164  lcmgcdlem  12272  lcmdvds  12274  cncongr2  12299  exprmfct  12333  pceu  12491  infpnlem1  12555  isghm  13451  ringadd2  13661  metrest  14850  bj-charfunbi  15565  bj-om  15691
  Copyright terms: Public domain W3C validator