ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  adantrd GIF version

Theorem adantrd 279
Description: Deduction adding a conjunct to the right of an antecedent. (Contributed by NM, 4-May-1994.)
Hypothesis
Ref Expression
adantrd.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
adantrd (𝜑 → ((𝜓𝜃) → 𝜒))

Proof of Theorem adantrd
StepHypRef Expression
1 simpl 109 . 2 ((𝜓𝜃) → 𝜓)
2 adantrd.1 . 2 (𝜑 → (𝜓𝜒))
31, 2syl5 32 1 (𝜑 → ((𝜓𝜃) → 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem is referenced by:  syldan  282  jaoa  725  prlem1  979  equveli  1805  elssabg  4231  suctr  4511  fvun1  5699  opabbrex  6047  poxp  6376  tposfo2  6411  1idprl  7773  1idpru  7774  uzind  9554  xrlttr  9987  fzen  10235  fz0fzelfz0  10319  ccatsymb  11132  fisumss  11898  fprodssdc  12096  zeqzmulgcd  12486  lcmgcdlem  12594  lcmdvds  12596  cncongr2  12621  exprmfct  12655  pceu  12813  infpnlem1  12877  isghm  13775  ringadd2  13985  metrest  15174  umgredg  15937  bj-charfunbi  16132  bj-om  16258
  Copyright terms: Public domain W3C validator