ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  adantrd GIF version

Theorem adantrd 277
Description: Deduction adding a conjunct to the right of an antecedent. (Contributed by NM, 4-May-1994.)
Hypothesis
Ref Expression
adantrd.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
adantrd (𝜑 → ((𝜓𝜃) → 𝜒))

Proof of Theorem adantrd
StepHypRef Expression
1 simpl 108 . 2 ((𝜓𝜃) → 𝜓)
2 adantrd.1 . 2 (𝜑 → (𝜓𝜒))
31, 2syl5 32 1 (𝜑 → ((𝜓𝜃) → 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105
This theorem is referenced by:  syldan  280  jaoa  710  prlem1  963  equveli  1747  elssabg  4126  suctr  4398  fvun1  5551  opabbrex  5882  poxp  6196  tposfo2  6231  1idprl  7527  1idpru  7528  uzind  9298  xrlttr  9727  fzen  9974  fz0fzelfz0  10058  fisumss  11329  fprodssdc  11527  zeqzmulgcd  11899  lcmgcdlem  12005  lcmdvds  12007  cncongr2  12032  exprmfct  12066  pceu  12223  infpnlem1  12285  metrest  13106  bj-charfunbi  13653  bj-om  13779
  Copyright terms: Public domain W3C validator