| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > adantrd | GIF version | ||
| Description: Deduction adding a conjunct to the right of an antecedent. (Contributed by NM, 4-May-1994.) |
| Ref | Expression |
|---|---|
| adantrd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| adantrd | ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 | . 2 ⊢ ((𝜓 ∧ 𝜃) → 𝜓) | |
| 2 | adantrd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | syl5 32 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem is referenced by: syldan 282 jaoa 721 prlem1 975 equveli 1773 elssabg 4182 suctr 4457 fvun1 5630 opabbrex 5970 poxp 6299 tposfo2 6334 1idprl 7674 1idpru 7675 uzind 9454 xrlttr 9887 fzen 10135 fz0fzelfz0 10219 fisumss 11574 fprodssdc 11772 zeqzmulgcd 12162 lcmgcdlem 12270 lcmdvds 12272 cncongr2 12297 exprmfct 12331 pceu 12489 infpnlem1 12553 isghm 13449 ringadd2 13659 metrest 14826 bj-charfunbi 15541 bj-om 15667 |
| Copyright terms: Public domain | W3C validator |