| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > adantrd | GIF version | ||
| Description: Deduction adding a conjunct to the right of an antecedent. (Contributed by NM, 4-May-1994.) |
| Ref | Expression |
|---|---|
| adantrd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| adantrd | ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 | . 2 ⊢ ((𝜓 ∧ 𝜃) → 𝜓) | |
| 2 | adantrd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | syl5 32 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem is referenced by: syldan 282 jaoa 721 prlem1 975 equveli 1773 elssabg 4182 suctr 4457 fvun1 5630 opabbrex 5970 poxp 6299 tposfo2 6334 1idprl 7676 1idpru 7677 uzind 9456 xrlttr 9889 fzen 10137 fz0fzelfz0 10221 fisumss 11576 fprodssdc 11774 zeqzmulgcd 12164 lcmgcdlem 12272 lcmdvds 12274 cncongr2 12299 exprmfct 12333 pceu 12491 infpnlem1 12555 isghm 13451 ringadd2 13661 metrest 14850 bj-charfunbi 15565 bj-om 15691 |
| Copyright terms: Public domain | W3C validator |