ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  adantrd GIF version

Theorem adantrd 277
Description: Deduction adding a conjunct to the right of an antecedent. (Contributed by NM, 4-May-1994.)
Hypothesis
Ref Expression
adantrd.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
adantrd (𝜑 → ((𝜓𝜃) → 𝜒))

Proof of Theorem adantrd
StepHypRef Expression
1 simpl 108 . 2 ((𝜓𝜃) → 𝜓)
2 adantrd.1 . 2 (𝜑 → (𝜓𝜒))
31, 2syl5 32 1 (𝜑 → ((𝜓𝜃) → 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105
This theorem is referenced by:  syldan  280  jaoa  710  prlem1  958  equveli  1739  elssabg  4109  suctr  4381  fvun1  5533  opabbrex  5862  poxp  6176  tposfo2  6211  1idprl  7504  1idpru  7505  uzind  9269  xrlttr  9695  fzen  9938  fz0fzelfz0  10019  fisumss  11282  fprodssdc  11480  zeqzmulgcd  11845  lcmgcdlem  11945  lcmdvds  11947  cncongr2  11972  exprmfct  12005  metrest  12877  bj-charfunbi  13357  bj-om  13483
  Copyright terms: Public domain W3C validator