ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  adantrd GIF version

Theorem adantrd 279
Description: Deduction adding a conjunct to the right of an antecedent. (Contributed by NM, 4-May-1994.)
Hypothesis
Ref Expression
adantrd.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
adantrd (𝜑 → ((𝜓𝜃) → 𝜒))

Proof of Theorem adantrd
StepHypRef Expression
1 simpl 109 . 2 ((𝜓𝜃) → 𝜓)
2 adantrd.1 . 2 (𝜑 → (𝜓𝜒))
31, 2syl5 32 1 (𝜑 → ((𝜓𝜃) → 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem is referenced by:  syldan  282  jaoa  722  prlem1  976  equveli  1783  elssabg  4200  suctr  4476  fvun1  5658  opabbrex  6002  poxp  6331  tposfo2  6366  1idprl  7723  1idpru  7724  uzind  9504  xrlttr  9937  fzen  10185  fz0fzelfz0  10269  ccatsymb  11081  fisumss  11778  fprodssdc  11976  zeqzmulgcd  12366  lcmgcdlem  12474  lcmdvds  12476  cncongr2  12501  exprmfct  12535  pceu  12693  infpnlem1  12757  isghm  13654  ringadd2  13864  metrest  15053  bj-charfunbi  15885  bj-om  16011
  Copyright terms: Public domain W3C validator