Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > adantrd | GIF version |
Description: Deduction adding a conjunct to the right of an antecedent. (Contributed by NM, 4-May-1994.) |
Ref | Expression |
---|---|
adantrd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
adantrd | ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . 2 ⊢ ((𝜓 ∧ 𝜃) → 𝜓) | |
2 | adantrd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | syl5 32 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 |
This theorem is referenced by: syldan 280 jaoa 715 prlem1 968 equveli 1752 elssabg 4134 suctr 4406 fvun1 5562 opabbrex 5897 poxp 6211 tposfo2 6246 1idprl 7552 1idpru 7553 uzind 9323 xrlttr 9752 fzen 9999 fz0fzelfz0 10083 fisumss 11355 fprodssdc 11553 zeqzmulgcd 11925 lcmgcdlem 12031 lcmdvds 12033 cncongr2 12058 exprmfct 12092 pceu 12249 infpnlem1 12311 metrest 13300 bj-charfunbi 13846 bj-om 13972 |
Copyright terms: Public domain | W3C validator |