| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > adantrd | GIF version | ||
| Description: Deduction adding a conjunct to the right of an antecedent. (Contributed by NM, 4-May-1994.) |
| Ref | Expression |
|---|---|
| adantrd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| adantrd | ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 | . 2 ⊢ ((𝜓 ∧ 𝜃) → 𝜓) | |
| 2 | adantrd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | syl5 32 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem is referenced by: syldan 282 jaoa 722 prlem1 976 equveli 1783 elssabg 4200 suctr 4476 fvun1 5658 opabbrex 6002 poxp 6331 tposfo2 6366 1idprl 7723 1idpru 7724 uzind 9504 xrlttr 9937 fzen 10185 fz0fzelfz0 10269 ccatsymb 11081 fisumss 11778 fprodssdc 11976 zeqzmulgcd 12366 lcmgcdlem 12474 lcmdvds 12476 cncongr2 12501 exprmfct 12535 pceu 12693 infpnlem1 12757 isghm 13654 ringadd2 13864 metrest 15053 bj-charfunbi 15885 bj-om 16011 |
| Copyright terms: Public domain | W3C validator |