ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqinfti GIF version

Theorem eqinfti 7183
Description: Sufficient condition for an element to be equal to the infimum. (Contributed by Jim Kingdon, 16-Dec-2021.)
Hypothesis
Ref Expression
eqinfti.ti ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
Assertion
Ref Expression
eqinfti (𝜑 → ((𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝐶 ∧ ∀𝑦𝐴 (𝐶𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) → inf(𝐵, 𝐴, 𝑅) = 𝐶))
Distinct variable groups:   𝑢,𝐴,𝑣,𝑦,𝑧   𝜑,𝑢,𝑣   𝑢,𝑅,𝑣,𝑦,𝑧   𝑢,𝐵,𝑣,𝑦,𝑧   𝑢,𝐶,𝑣,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑧)

Proof of Theorem eqinfti
StepHypRef Expression
1 df-inf 7148 . . 3 inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, 𝑅)
2 eqinfti.ti . . . . . 6 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
32cnvti 7182 . . . . 5 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
43eqsupti 7159 . . . 4 (𝜑 → ((𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝐶𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧)) → sup(𝐵, 𝐴, 𝑅) = 𝐶))
5 vex 2802 . . . . . . . . . . 11 𝑦 ∈ V
6 brcnvg 4902 . . . . . . . . . . . 12 ((𝐶𝐴𝑦 ∈ V) → (𝐶𝑅𝑦𝑦𝑅𝐶))
76bicomd 141 . . . . . . . . . . 11 ((𝐶𝐴𝑦 ∈ V) → (𝑦𝑅𝐶𝐶𝑅𝑦))
85, 7mpan2 425 . . . . . . . . . 10 (𝐶𝐴 → (𝑦𝑅𝐶𝐶𝑅𝑦))
98notbid 671 . . . . . . . . 9 (𝐶𝐴 → (¬ 𝑦𝑅𝐶 ↔ ¬ 𝐶𝑅𝑦))
109ralbidv 2530 . . . . . . . 8 (𝐶𝐴 → (∀𝑦𝐵 ¬ 𝑦𝑅𝐶 ↔ ∀𝑦𝐵 ¬ 𝐶𝑅𝑦))
11 brcnvg 4902 . . . . . . . . . . . 12 ((𝑦 ∈ V ∧ 𝐶𝐴) → (𝑦𝑅𝐶𝐶𝑅𝑦))
125, 11mpan 424 . . . . . . . . . . 11 (𝐶𝐴 → (𝑦𝑅𝐶𝐶𝑅𝑦))
1312bicomd 141 . . . . . . . . . 10 (𝐶𝐴 → (𝐶𝑅𝑦𝑦𝑅𝐶))
14 vex 2802 . . . . . . . . . . . . . 14 𝑧 ∈ V
155, 14brcnv 4904 . . . . . . . . . . . . 13 (𝑦𝑅𝑧𝑧𝑅𝑦)
1615a1i 9 . . . . . . . . . . . 12 (𝐶𝐴 → (𝑦𝑅𝑧𝑧𝑅𝑦))
1716bicomd 141 . . . . . . . . . . 11 (𝐶𝐴 → (𝑧𝑅𝑦𝑦𝑅𝑧))
1817rexbidv 2531 . . . . . . . . . 10 (𝐶𝐴 → (∃𝑧𝐵 𝑧𝑅𝑦 ↔ ∃𝑧𝐵 𝑦𝑅𝑧))
1913, 18imbi12d 234 . . . . . . . . 9 (𝐶𝐴 → ((𝐶𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦) ↔ (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧)))
2019ralbidv 2530 . . . . . . . 8 (𝐶𝐴 → (∀𝑦𝐴 (𝐶𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦) ↔ ∀𝑦𝐴 (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧)))
2110, 20anbi12d 473 . . . . . . 7 (𝐶𝐴 → ((∀𝑦𝐵 ¬ 𝑦𝑅𝐶 ∧ ∀𝑦𝐴 (𝐶𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) ↔ (∀𝑦𝐵 ¬ 𝐶𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧))))
2221pm5.32i 454 . . . . . 6 ((𝐶𝐴 ∧ (∀𝑦𝐵 ¬ 𝑦𝑅𝐶 ∧ ∀𝑦𝐴 (𝐶𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))) ↔ (𝐶𝐴 ∧ (∀𝑦𝐵 ¬ 𝐶𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧))))
23 3anass 1006 . . . . . 6 ((𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝐶 ∧ ∀𝑦𝐴 (𝐶𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) ↔ (𝐶𝐴 ∧ (∀𝑦𝐵 ¬ 𝑦𝑅𝐶 ∧ ∀𝑦𝐴 (𝐶𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))))
24 3anass 1006 . . . . . 6 ((𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝐶𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧)) ↔ (𝐶𝐴 ∧ (∀𝑦𝐵 ¬ 𝐶𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧))))
2522, 23, 243bitr4i 212 . . . . 5 ((𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝐶 ∧ ∀𝑦𝐴 (𝐶𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) ↔ (𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝐶𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧)))
2625biimpi 120 . . . 4 ((𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝐶 ∧ ∀𝑦𝐴 (𝐶𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) → (𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝐶𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧)))
274, 26impel 280 . . 3 ((𝜑 ∧ (𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝐶 ∧ ∀𝑦𝐴 (𝐶𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))) → sup(𝐵, 𝐴, 𝑅) = 𝐶)
281, 27eqtrid 2274 . 2 ((𝜑 ∧ (𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝐶 ∧ ∀𝑦𝐴 (𝐶𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))) → inf(𝐵, 𝐴, 𝑅) = 𝐶)
2928ex 115 1 (𝜑 → ((𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝐶 ∧ ∀𝑦𝐴 (𝐶𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) → inf(𝐵, 𝐴, 𝑅) = 𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wcel 2200  wral 2508  wrex 2509  Vcvv 2799   class class class wbr 4082  ccnv 4717  supcsup 7145  infcinf 7146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-cnv 4726  df-iota 5277  df-riota 5953  df-sup 7147  df-inf 7148
This theorem is referenced by:  eqinftid  7184
  Copyright terms: Public domain W3C validator