ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqinfti GIF version

Theorem eqinfti 6795
Description: Sufficient condition for an element to be equal to the infimum. (Contributed by Jim Kingdon, 16-Dec-2021.)
Hypothesis
Ref Expression
eqinfti.ti ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
Assertion
Ref Expression
eqinfti (𝜑 → ((𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝐶 ∧ ∀𝑦𝐴 (𝐶𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) → inf(𝐵, 𝐴, 𝑅) = 𝐶))
Distinct variable groups:   𝑢,𝐴,𝑣,𝑦,𝑧   𝜑,𝑢,𝑣   𝑢,𝑅,𝑣,𝑦,𝑧   𝑢,𝐵,𝑣,𝑦,𝑧   𝑢,𝐶,𝑣,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑧)

Proof of Theorem eqinfti
StepHypRef Expression
1 df-inf 6760 . . 3 inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, 𝑅)
2 eqinfti.ti . . . . . 6 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
32cnvti 6794 . . . . 5 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
43eqsupti 6771 . . . 4 (𝜑 → ((𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝐶𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧)) → sup(𝐵, 𝐴, 𝑅) = 𝐶))
5 vex 2636 . . . . . . . . . . 11 𝑦 ∈ V
6 brcnvg 4648 . . . . . . . . . . . 12 ((𝐶𝐴𝑦 ∈ V) → (𝐶𝑅𝑦𝑦𝑅𝐶))
76bicomd 140 . . . . . . . . . . 11 ((𝐶𝐴𝑦 ∈ V) → (𝑦𝑅𝐶𝐶𝑅𝑦))
85, 7mpan2 417 . . . . . . . . . 10 (𝐶𝐴 → (𝑦𝑅𝐶𝐶𝑅𝑦))
98notbid 630 . . . . . . . . 9 (𝐶𝐴 → (¬ 𝑦𝑅𝐶 ↔ ¬ 𝐶𝑅𝑦))
109ralbidv 2391 . . . . . . . 8 (𝐶𝐴 → (∀𝑦𝐵 ¬ 𝑦𝑅𝐶 ↔ ∀𝑦𝐵 ¬ 𝐶𝑅𝑦))
11 brcnvg 4648 . . . . . . . . . . . 12 ((𝑦 ∈ V ∧ 𝐶𝐴) → (𝑦𝑅𝐶𝐶𝑅𝑦))
125, 11mpan 416 . . . . . . . . . . 11 (𝐶𝐴 → (𝑦𝑅𝐶𝐶𝑅𝑦))
1312bicomd 140 . . . . . . . . . 10 (𝐶𝐴 → (𝐶𝑅𝑦𝑦𝑅𝐶))
14 vex 2636 . . . . . . . . . . . . . 14 𝑧 ∈ V
155, 14brcnv 4650 . . . . . . . . . . . . 13 (𝑦𝑅𝑧𝑧𝑅𝑦)
1615a1i 9 . . . . . . . . . . . 12 (𝐶𝐴 → (𝑦𝑅𝑧𝑧𝑅𝑦))
1716bicomd 140 . . . . . . . . . . 11 (𝐶𝐴 → (𝑧𝑅𝑦𝑦𝑅𝑧))
1817rexbidv 2392 . . . . . . . . . 10 (𝐶𝐴 → (∃𝑧𝐵 𝑧𝑅𝑦 ↔ ∃𝑧𝐵 𝑦𝑅𝑧))
1913, 18imbi12d 233 . . . . . . . . 9 (𝐶𝐴 → ((𝐶𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦) ↔ (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧)))
2019ralbidv 2391 . . . . . . . 8 (𝐶𝐴 → (∀𝑦𝐴 (𝐶𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦) ↔ ∀𝑦𝐴 (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧)))
2110, 20anbi12d 458 . . . . . . 7 (𝐶𝐴 → ((∀𝑦𝐵 ¬ 𝑦𝑅𝐶 ∧ ∀𝑦𝐴 (𝐶𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) ↔ (∀𝑦𝐵 ¬ 𝐶𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧))))
2221pm5.32i 443 . . . . . 6 ((𝐶𝐴 ∧ (∀𝑦𝐵 ¬ 𝑦𝑅𝐶 ∧ ∀𝑦𝐴 (𝐶𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))) ↔ (𝐶𝐴 ∧ (∀𝑦𝐵 ¬ 𝐶𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧))))
23 3anass 931 . . . . . 6 ((𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝐶 ∧ ∀𝑦𝐴 (𝐶𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) ↔ (𝐶𝐴 ∧ (∀𝑦𝐵 ¬ 𝑦𝑅𝐶 ∧ ∀𝑦𝐴 (𝐶𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))))
24 3anass 931 . . . . . 6 ((𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝐶𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧)) ↔ (𝐶𝐴 ∧ (∀𝑦𝐵 ¬ 𝐶𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧))))
2522, 23, 243bitr4i 211 . . . . 5 ((𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝐶 ∧ ∀𝑦𝐴 (𝐶𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) ↔ (𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝐶𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧)))
2625biimpi 119 . . . 4 ((𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝐶 ∧ ∀𝑦𝐴 (𝐶𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) → (𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝐶𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧)))
274, 26impel 275 . . 3 ((𝜑 ∧ (𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝐶 ∧ ∀𝑦𝐴 (𝐶𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))) → sup(𝐵, 𝐴, 𝑅) = 𝐶)
281, 27syl5eq 2139 . 2 ((𝜑 ∧ (𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝐶 ∧ ∀𝑦𝐴 (𝐶𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))) → inf(𝐵, 𝐴, 𝑅) = 𝐶)
2928ex 114 1 (𝜑 → ((𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝐶 ∧ ∀𝑦𝐴 (𝐶𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) → inf(𝐵, 𝐴, 𝑅) = 𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  w3a 927   = wceq 1296  wcel 1445  wral 2370  wrex 2371  Vcvv 2633   class class class wbr 3867  ccnv 4466  supcsup 6757  infcinf 6758
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ral 2375  df-rex 2376  df-reu 2377  df-rmo 2378  df-rab 2379  df-v 2635  df-sbc 2855  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-br 3868  df-opab 3922  df-cnv 4475  df-iota 5014  df-riota 5646  df-sup 6759  df-inf 6760
This theorem is referenced by:  eqinftid  6796
  Copyright terms: Public domain W3C validator