| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > impel | Unicode version | ||
| Description: An inference for implication elimination. (Contributed by Giovanni Mascellani, 23-May-2019.) (Proof shortened by Wolf Lammen, 2-Sep-2020.) |
| Ref | Expression |
|---|---|
| impel.1 |
|
| impel.2 |
|
| Ref | Expression |
|---|---|
| impel |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impel.2 |
. . 3
| |
| 2 | impel.1 |
. . 3
| |
| 3 | 1, 2 | syl5 32 |
. 2
|
| 4 | 3 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem is referenced by: pm4.55dc 944 fiintim 7093 eqinfti 7187 finomni 7307 frecuzrdgrclt 10637 seq3coll 11064 swrdswrd 11237 swrdccatin1 11257 swrdccatin2 11261 fprodsplitsn 12144 nninfctlemfo 12561 unct 13013 isnzr2 14148 dvcnp2cntop 15373 fsumdvdsmul 15665 perfectlem2 15674 upgrwlkcompim 16073 wlkv0 16080 |
| Copyright terms: Public domain | W3C validator |