ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  impel Unicode version

Theorem impel 280
Description: An inference for implication elimination. (Contributed by Giovanni Mascellani, 23-May-2019.) (Proof shortened by Wolf Lammen, 2-Sep-2020.)
Hypotheses
Ref Expression
impel.1  |-  ( ph  ->  ( ps  ->  ch ) )
impel.2  |-  ( th 
->  ps )
Assertion
Ref Expression
impel  |-  ( (
ph  /\  th )  ->  ch )

Proof of Theorem impel
StepHypRef Expression
1 impel.2 . . 3  |-  ( th 
->  ps )
2 impel.1 . . 3  |-  ( ph  ->  ( ps  ->  ch ) )
31, 2syl5 32 . 2  |-  ( ph  ->  ( th  ->  ch ) )
43imp 124 1  |-  ( (
ph  /\  th )  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem is referenced by:  pm4.55dc  941  fiintim  7054  eqinfti  7148  finomni  7268  frecuzrdgrclt  10597  seq3coll  11024  swrdswrd  11196  swrdccatin1  11216  swrdccatin2  11220  fprodsplitsn  12059  nninfctlemfo  12476  unct  12928  isnzr2  14061  dvcnp2cntop  15286  fsumdvdsmul  15578  perfectlem2  15587
  Copyright terms: Public domain W3C validator