ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  impel Unicode version

Theorem impel 280
Description: An inference for implication elimination. (Contributed by Giovanni Mascellani, 23-May-2019.) (Proof shortened by Wolf Lammen, 2-Sep-2020.)
Hypotheses
Ref Expression
impel.1  |-  ( ph  ->  ( ps  ->  ch ) )
impel.2  |-  ( th 
->  ps )
Assertion
Ref Expression
impel  |-  ( (
ph  /\  th )  ->  ch )

Proof of Theorem impel
StepHypRef Expression
1 impel.2 . . 3  |-  ( th 
->  ps )
2 impel.1 . . 3  |-  ( ph  ->  ( ps  ->  ch ) )
31, 2syl5 32 . 2  |-  ( ph  ->  ( th  ->  ch ) )
43imp 124 1  |-  ( (
ph  /\  th )  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem is referenced by:  pm4.55dc  944  fiintim  7093  eqinfti  7187  finomni  7307  frecuzrdgrclt  10637  seq3coll  11064  swrdswrd  11237  swrdccatin1  11257  swrdccatin2  11261  fprodsplitsn  12144  nninfctlemfo  12561  unct  13013  isnzr2  14148  dvcnp2cntop  15373  fsumdvdsmul  15665  perfectlem2  15674  upgrwlkcompim  16073  wlkv0  16080
  Copyright terms: Public domain W3C validator