ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  impel Unicode version

Theorem impel 278
Description: An inference for implication elimination. (Contributed by Giovanni Mascellani, 23-May-2019.) (Proof shortened by Wolf Lammen, 2-Sep-2020.)
Hypotheses
Ref Expression
impel.1  |-  ( ph  ->  ( ps  ->  ch ) )
impel.2  |-  ( th 
->  ps )
Assertion
Ref Expression
impel  |-  ( (
ph  /\  th )  ->  ch )

Proof of Theorem impel
StepHypRef Expression
1 impel.2 . . 3  |-  ( th 
->  ps )
2 impel.1 . . 3  |-  ( ph  ->  ( ps  ->  ch ) )
31, 2syl5 32 . 2  |-  ( ph  ->  ( th  ->  ch ) )
43imp 123 1  |-  ( (
ph  /\  th )  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106
This theorem is referenced by:  fiintim  6906  eqinfti  6997  finomni  7116  frecuzrdgrclt  10371  seq3coll  10777  fprodsplitsn  11596  unct  12397  dvcnp2cntop  13457
  Copyright terms: Public domain W3C validator