Step | Hyp | Ref
| Expression |
1 | | seqcoll.3 |
. 2
⊢ (𝜑 → 𝑁 ∈ (1...(♯‘𝐴))) |
2 | | elfznn 9934 |
. . . 4
⊢ (𝑁 ∈
(1...(♯‘𝐴))
→ 𝑁 ∈
ℕ) |
3 | 1, 2 | syl 14 |
. . 3
⊢ (𝜑 → 𝑁 ∈ ℕ) |
4 | | eleq1 2217 |
. . . . . 6
⊢ (𝑦 = 1 → (𝑦 ∈ (1...(♯‘𝐴)) ↔ 1 ∈ (1...(♯‘𝐴)))) |
5 | | 2fveq3 5466 |
. . . . . . 7
⊢ (𝑦 = 1 → (seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq𝑀( + , 𝐹)‘(𝐺‘1))) |
6 | | fveq2 5461 |
. . . . . . 7
⊢ (𝑦 = 1 → (seq1( + , 𝐻)‘𝑦) = (seq1( + , 𝐻)‘1)) |
7 | 5, 6 | eqeq12d 2169 |
. . . . . 6
⊢ (𝑦 = 1 → ((seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq1( + , 𝐻)‘𝑦) ↔ (seq𝑀( + , 𝐹)‘(𝐺‘1)) = (seq1( + , 𝐻)‘1))) |
8 | 4, 7 | imbi12d 233 |
. . . . 5
⊢ (𝑦 = 1 → ((𝑦 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq1( + , 𝐻)‘𝑦)) ↔ (1 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘1)) = (seq1( + , 𝐻)‘1)))) |
9 | 8 | imbi2d 229 |
. . . 4
⊢ (𝑦 = 1 → ((𝜑 → (𝑦 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq1( + , 𝐻)‘𝑦))) ↔ (𝜑 → (1 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘1)) = (seq1( + , 𝐻)‘1))))) |
10 | | eleq1 2217 |
. . . . . 6
⊢ (𝑦 = 𝑚 → (𝑦 ∈ (1...(♯‘𝐴)) ↔ 𝑚 ∈ (1...(♯‘𝐴)))) |
11 | | 2fveq3 5466 |
. . . . . . 7
⊢ (𝑦 = 𝑚 → (seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq𝑀( + , 𝐹)‘(𝐺‘𝑚))) |
12 | | fveq2 5461 |
. . . . . . 7
⊢ (𝑦 = 𝑚 → (seq1( + , 𝐻)‘𝑦) = (seq1( + , 𝐻)‘𝑚)) |
13 | 11, 12 | eqeq12d 2169 |
. . . . . 6
⊢ (𝑦 = 𝑚 → ((seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq1( + , 𝐻)‘𝑦) ↔ (seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) = (seq1( + , 𝐻)‘𝑚))) |
14 | 10, 13 | imbi12d 233 |
. . . . 5
⊢ (𝑦 = 𝑚 → ((𝑦 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq1( + , 𝐻)‘𝑦)) ↔ (𝑚 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) = (seq1( + , 𝐻)‘𝑚)))) |
15 | 14 | imbi2d 229 |
. . . 4
⊢ (𝑦 = 𝑚 → ((𝜑 → (𝑦 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq1( + , 𝐻)‘𝑦))) ↔ (𝜑 → (𝑚 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) = (seq1( + , 𝐻)‘𝑚))))) |
16 | | eleq1 2217 |
. . . . . 6
⊢ (𝑦 = (𝑚 + 1) → (𝑦 ∈ (1...(♯‘𝐴)) ↔ (𝑚 + 1) ∈ (1...(♯‘𝐴)))) |
17 | | 2fveq3 5466 |
. . . . . . 7
⊢ (𝑦 = (𝑚 + 1) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1)))) |
18 | | fveq2 5461 |
. . . . . . 7
⊢ (𝑦 = (𝑚 + 1) → (seq1( + , 𝐻)‘𝑦) = (seq1( + , 𝐻)‘(𝑚 + 1))) |
19 | 17, 18 | eqeq12d 2169 |
. . . . . 6
⊢ (𝑦 = (𝑚 + 1) → ((seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq1( + , 𝐻)‘𝑦) ↔ (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = (seq1( + , 𝐻)‘(𝑚 + 1)))) |
20 | 16, 19 | imbi12d 233 |
. . . . 5
⊢ (𝑦 = (𝑚 + 1) → ((𝑦 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq1( + , 𝐻)‘𝑦)) ↔ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = (seq1( + , 𝐻)‘(𝑚 + 1))))) |
21 | 20 | imbi2d 229 |
. . . 4
⊢ (𝑦 = (𝑚 + 1) → ((𝜑 → (𝑦 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq1( + , 𝐻)‘𝑦))) ↔ (𝜑 → ((𝑚 + 1) ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = (seq1( + , 𝐻)‘(𝑚 + 1)))))) |
22 | | eleq1 2217 |
. . . . . 6
⊢ (𝑦 = 𝑁 → (𝑦 ∈ (1...(♯‘𝐴)) ↔ 𝑁 ∈ (1...(♯‘𝐴)))) |
23 | | 2fveq3 5466 |
. . . . . . 7
⊢ (𝑦 = 𝑁 → (seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq𝑀( + , 𝐹)‘(𝐺‘𝑁))) |
24 | | fveq2 5461 |
. . . . . . 7
⊢ (𝑦 = 𝑁 → (seq1( + , 𝐻)‘𝑦) = (seq1( + , 𝐻)‘𝑁)) |
25 | 23, 24 | eqeq12d 2169 |
. . . . . 6
⊢ (𝑦 = 𝑁 → ((seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq1( + , 𝐻)‘𝑦) ↔ (seq𝑀( + , 𝐹)‘(𝐺‘𝑁)) = (seq1( + , 𝐻)‘𝑁))) |
26 | 22, 25 | imbi12d 233 |
. . . . 5
⊢ (𝑦 = 𝑁 → ((𝑦 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq1( + , 𝐻)‘𝑦)) ↔ (𝑁 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑁)) = (seq1( + , 𝐻)‘𝑁)))) |
27 | 26 | imbi2d 229 |
. . . 4
⊢ (𝑦 = 𝑁 → ((𝜑 → (𝑦 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq1( + , 𝐻)‘𝑦))) ↔ (𝜑 → (𝑁 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑁)) = (seq1( + , 𝐻)‘𝑁))))) |
28 | | seqcoll.1 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑆) → (𝑍 + 𝑘) = 𝑘) |
29 | | seqcoll.a |
. . . . . . . . 9
⊢ (𝜑 → 𝑍 ∈ 𝑆) |
30 | | seqcoll.4 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ⊆ (ℤ≥‘𝑀)) |
31 | | seqcoll.2 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐺 Isom < , < ((1...(♯‘𝐴)), 𝐴)) |
32 | | isof1o 5748 |
. . . . . . . . . . . . 13
⊢ (𝐺 Isom < , <
((1...(♯‘𝐴)),
𝐴) → 𝐺:(1...(♯‘𝐴))–1-1-onto→𝐴) |
33 | 31, 32 | syl 14 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐺:(1...(♯‘𝐴))–1-1-onto→𝐴) |
34 | | f1of 5407 |
. . . . . . . . . . . 12
⊢ (𝐺:(1...(♯‘𝐴))–1-1-onto→𝐴 → 𝐺:(1...(♯‘𝐴))⟶𝐴) |
35 | 33, 34 | syl 14 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐺:(1...(♯‘𝐴))⟶𝐴) |
36 | | elfzuz2 9909 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈
(1...(♯‘𝐴))
→ (♯‘𝐴)
∈ (ℤ≥‘1)) |
37 | 1, 36 | syl 14 |
. . . . . . . . . . . 12
⊢ (𝜑 → (♯‘𝐴) ∈
(ℤ≥‘1)) |
38 | | eluzfz1 9911 |
. . . . . . . . . . . 12
⊢
((♯‘𝐴)
∈ (ℤ≥‘1) → 1 ∈
(1...(♯‘𝐴))) |
39 | 37, 38 | syl 14 |
. . . . . . . . . . 11
⊢ (𝜑 → 1 ∈
(1...(♯‘𝐴))) |
40 | 35, 39 | ffvelrnd 5596 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐺‘1) ∈ 𝐴) |
41 | 30, 40 | sseldd 3125 |
. . . . . . . . 9
⊢ (𝜑 → (𝐺‘1) ∈
(ℤ≥‘𝑀)) |
42 | | eluzle 9430 |
. . . . . . . . . . . . 13
⊢
((♯‘𝐴)
∈ (ℤ≥‘1) → 1 ≤ (♯‘𝐴)) |
43 | 37, 42 | syl 14 |
. . . . . . . . . . . 12
⊢ (𝜑 → 1 ≤
(♯‘𝐴)) |
44 | | elfzelz 9906 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈
(1...(♯‘𝐴))
→ 𝑘 ∈
ℤ) |
45 | 44 | ssriv 3128 |
. . . . . . . . . . . . . . . 16
⊢
(1...(♯‘𝐴)) ⊆ ℤ |
46 | | zssre 9153 |
. . . . . . . . . . . . . . . 16
⊢ ℤ
⊆ ℝ |
47 | 45, 46 | sstri 3133 |
. . . . . . . . . . . . . . 15
⊢
(1...(♯‘𝐴)) ⊆ ℝ |
48 | 47 | a1i 9 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (1...(♯‘𝐴)) ⊆
ℝ) |
49 | | ressxr 7900 |
. . . . . . . . . . . . . 14
⊢ ℝ
⊆ ℝ* |
50 | 48, 49 | sstrdi 3136 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (1...(♯‘𝐴)) ⊆
ℝ*) |
51 | | eluzelre 9428 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → 𝑘 ∈ ℝ) |
52 | 51 | ssriv 3128 |
. . . . . . . . . . . . . . 15
⊢
(ℤ≥‘𝑀) ⊆ ℝ |
53 | 30, 52 | sstrdi 3136 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
54 | 53, 49 | sstrdi 3136 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴 ⊆
ℝ*) |
55 | | eluzfz2 9912 |
. . . . . . . . . . . . . 14
⊢
((♯‘𝐴)
∈ (ℤ≥‘1) → (♯‘𝐴) ∈ (1...(♯‘𝐴))) |
56 | 37, 55 | syl 14 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (♯‘𝐴) ∈
(1...(♯‘𝐴))) |
57 | | leisorel 10685 |
. . . . . . . . . . . . 13
⊢ ((𝐺 Isom < , <
((1...(♯‘𝐴)),
𝐴) ∧
((1...(♯‘𝐴))
⊆ ℝ* ∧ 𝐴 ⊆ ℝ*) ∧ (1
∈ (1...(♯‘𝐴)) ∧ (♯‘𝐴) ∈ (1...(♯‘𝐴)))) → (1 ≤
(♯‘𝐴) ↔
(𝐺‘1) ≤ (𝐺‘(♯‘𝐴)))) |
58 | 31, 50, 54, 39, 56, 57 | syl122anc 1226 |
. . . . . . . . . . . 12
⊢ (𝜑 → (1 ≤
(♯‘𝐴) ↔
(𝐺‘1) ≤ (𝐺‘(♯‘𝐴)))) |
59 | 43, 58 | mpbid 146 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐺‘1) ≤ (𝐺‘(♯‘𝐴))) |
60 | 35, 56 | ffvelrnd 5596 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐺‘(♯‘𝐴)) ∈ 𝐴) |
61 | 30, 60 | sseldd 3125 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐺‘(♯‘𝐴)) ∈
(ℤ≥‘𝑀)) |
62 | | eluzelz 9427 |
. . . . . . . . . . . . 13
⊢ ((𝐺‘(♯‘𝐴)) ∈
(ℤ≥‘𝑀) → (𝐺‘(♯‘𝐴)) ∈ ℤ) |
63 | 61, 62 | syl 14 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐺‘(♯‘𝐴)) ∈ ℤ) |
64 | | elfz5 9898 |
. . . . . . . . . . . 12
⊢ (((𝐺‘1) ∈
(ℤ≥‘𝑀) ∧ (𝐺‘(♯‘𝐴)) ∈ ℤ) → ((𝐺‘1) ∈ (𝑀...(𝐺‘(♯‘𝐴))) ↔ (𝐺‘1) ≤ (𝐺‘(♯‘𝐴)))) |
65 | 41, 63, 64 | syl2anc 409 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐺‘1) ∈ (𝑀...(𝐺‘(♯‘𝐴))) ↔ (𝐺‘1) ≤ (𝐺‘(♯‘𝐴)))) |
66 | 59, 65 | mpbird 166 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐺‘1) ∈ (𝑀...(𝐺‘(♯‘𝐴)))) |
67 | | fveq2 5461 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (𝐺‘1) → (𝐹‘𝑘) = (𝐹‘(𝐺‘1))) |
68 | 67 | eleq1d 2223 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝐺‘1) → ((𝐹‘𝑘) ∈ 𝑆 ↔ (𝐹‘(𝐺‘1)) ∈ 𝑆)) |
69 | 68 | imbi2d 229 |
. . . . . . . . . . 11
⊢ (𝑘 = (𝐺‘1) → ((𝜑 → (𝐹‘𝑘) ∈ 𝑆) ↔ (𝜑 → (𝐹‘(𝐺‘1)) ∈ 𝑆))) |
70 | | elfzuz 9902 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (𝑀...(𝐺‘(♯‘𝐴))) → 𝑘 ∈ (ℤ≥‘𝑀)) |
71 | | seqcoll.5 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ 𝑆) |
72 | 71 | expcom 115 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → (𝜑 → (𝐹‘𝑘) ∈ 𝑆)) |
73 | 70, 72 | syl 14 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (𝑀...(𝐺‘(♯‘𝐴))) → (𝜑 → (𝐹‘𝑘) ∈ 𝑆)) |
74 | 69, 73 | vtoclga 2775 |
. . . . . . . . . 10
⊢ ((𝐺‘1) ∈ (𝑀...(𝐺‘(♯‘𝐴))) → (𝜑 → (𝐹‘(𝐺‘1)) ∈ 𝑆)) |
75 | 66, 74 | mpcom 36 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹‘(𝐺‘1)) ∈ 𝑆) |
76 | | eluzelz 9427 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐺‘1) ∈
(ℤ≥‘𝑀) → (𝐺‘1) ∈ ℤ) |
77 | 41, 76 | syl 14 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐺‘1) ∈ ℤ) |
78 | | peano2zm 9184 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺‘1) ∈ ℤ →
((𝐺‘1) − 1)
∈ ℤ) |
79 | 77, 78 | syl 14 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝐺‘1) − 1) ∈
ℤ) |
80 | 79 | zred 9265 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝐺‘1) − 1) ∈
ℝ) |
81 | 77 | zred 9265 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐺‘1) ∈ ℝ) |
82 | 63 | zred 9265 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐺‘(♯‘𝐴)) ∈ ℝ) |
83 | 81 | lem1d 8783 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝐺‘1) − 1) ≤ (𝐺‘1)) |
84 | 80, 81, 82, 83, 59 | letrd 7978 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝐺‘1) − 1) ≤ (𝐺‘(♯‘𝐴))) |
85 | | eluz 9431 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐺‘1) − 1) ∈
ℤ ∧ (𝐺‘(♯‘𝐴)) ∈ ℤ) → ((𝐺‘(♯‘𝐴)) ∈
(ℤ≥‘((𝐺‘1) − 1)) ↔ ((𝐺‘1) − 1) ≤ (𝐺‘(♯‘𝐴)))) |
86 | 79, 63, 85 | syl2anc 409 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝐺‘(♯‘𝐴)) ∈
(ℤ≥‘((𝐺‘1) − 1)) ↔ ((𝐺‘1) − 1) ≤ (𝐺‘(♯‘𝐴)))) |
87 | 84, 86 | mpbird 166 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐺‘(♯‘𝐴)) ∈
(ℤ≥‘((𝐺‘1) − 1))) |
88 | | fzss2 9944 |
. . . . . . . . . . . . 13
⊢ ((𝐺‘(♯‘𝐴)) ∈
(ℤ≥‘((𝐺‘1) − 1)) → (𝑀...((𝐺‘1) − 1)) ⊆ (𝑀...(𝐺‘(♯‘𝐴)))) |
89 | 87, 88 | syl 14 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑀...((𝐺‘1) − 1)) ⊆ (𝑀...(𝐺‘(♯‘𝐴)))) |
90 | 89 | sselda 3124 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...((𝐺‘1) − 1))) → 𝑘 ∈ (𝑀...(𝐺‘(♯‘𝐴)))) |
91 | | eluzel2 9423 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺‘1) ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
92 | 41, 91 | syl 14 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑀 ∈ ℤ) |
93 | | elfzm11 9971 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ ℤ ∧ (𝐺‘1) ∈ ℤ) →
(𝑘 ∈ (𝑀...((𝐺‘1) − 1)) ↔ (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ∧ 𝑘 < (𝐺‘1)))) |
94 | 92, 77, 93 | syl2anc 409 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑘 ∈ (𝑀...((𝐺‘1) − 1)) ↔ (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ∧ 𝑘 < (𝐺‘1)))) |
95 | | simp3 984 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ∧ 𝑘 < (𝐺‘1)) → 𝑘 < (𝐺‘1)) |
96 | 81 | adantr 274 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐺‘1) ∈ ℝ) |
97 | 53 | sselda 3124 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ ℝ) |
98 | | f1ocnv 5420 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐺:(1...(♯‘𝐴))–1-1-onto→𝐴 → ◡𝐺:𝐴–1-1-onto→(1...(♯‘𝐴))) |
99 | 33, 98 | syl 14 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ◡𝐺:𝐴–1-1-onto→(1...(♯‘𝐴))) |
100 | | f1of 5407 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (◡𝐺:𝐴–1-1-onto→(1...(♯‘𝐴)) → ◡𝐺:𝐴⟶(1...(♯‘𝐴))) |
101 | 99, 100 | syl 14 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ◡𝐺:𝐴⟶(1...(♯‘𝐴))) |
102 | 101 | ffvelrnda 5595 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (◡𝐺‘𝑘) ∈ (1...(♯‘𝐴))) |
103 | | elfznn 9934 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((◡𝐺‘𝑘) ∈ (1...(♯‘𝐴)) → (◡𝐺‘𝑘) ∈ ℕ) |
104 | 102, 103 | syl 14 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (◡𝐺‘𝑘) ∈ ℕ) |
105 | 104 | nnge1d 8855 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 1 ≤ (◡𝐺‘𝑘)) |
106 | 31 | adantr 274 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐺 Isom < , < ((1...(♯‘𝐴)), 𝐴)) |
107 | 50 | adantr 274 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (1...(♯‘𝐴)) ⊆
ℝ*) |
108 | 54 | adantr 274 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐴 ⊆
ℝ*) |
109 | 39 | adantr 274 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 1 ∈ (1...(♯‘𝐴))) |
110 | | leisorel 10685 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐺 Isom < , <
((1...(♯‘𝐴)),
𝐴) ∧
((1...(♯‘𝐴))
⊆ ℝ* ∧ 𝐴 ⊆ ℝ*) ∧ (1
∈ (1...(♯‘𝐴)) ∧ (◡𝐺‘𝑘) ∈ (1...(♯‘𝐴)))) → (1 ≤ (◡𝐺‘𝑘) ↔ (𝐺‘1) ≤ (𝐺‘(◡𝐺‘𝑘)))) |
111 | 106, 107,
108, 109, 102, 110 | syl122anc 1226 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (1 ≤ (◡𝐺‘𝑘) ↔ (𝐺‘1) ≤ (𝐺‘(◡𝐺‘𝑘)))) |
112 | 105, 111 | mpbid 146 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐺‘1) ≤ (𝐺‘(◡𝐺‘𝑘))) |
113 | | f1ocnvfv2 5719 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐺:(1...(♯‘𝐴))–1-1-onto→𝐴 ∧ 𝑘 ∈ 𝐴) → (𝐺‘(◡𝐺‘𝑘)) = 𝑘) |
114 | 33, 113 | sylan 281 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐺‘(◡𝐺‘𝑘)) = 𝑘) |
115 | 112, 114 | breqtrd 3986 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐺‘1) ≤ 𝑘) |
116 | 96, 97, 115 | lensymd 7976 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ¬ 𝑘 < (𝐺‘1)) |
117 | 116 | ex 114 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑘 ∈ 𝐴 → ¬ 𝑘 < (𝐺‘1))) |
118 | 117 | con2d 614 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑘 < (𝐺‘1) → ¬ 𝑘 ∈ 𝐴)) |
119 | 95, 118 | syl5 32 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ∧ 𝑘 < (𝐺‘1)) → ¬ 𝑘 ∈ 𝐴)) |
120 | 94, 119 | sylbid 149 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑘 ∈ (𝑀...((𝐺‘1) − 1)) → ¬ 𝑘 ∈ 𝐴)) |
121 | 120 | imp 123 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...((𝐺‘1) − 1))) → ¬ 𝑘 ∈ 𝐴) |
122 | 90, 121 | eldifd 3108 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...((𝐺‘1) − 1))) → 𝑘 ∈ ((𝑀...(𝐺‘(♯‘𝐴))) ∖ 𝐴)) |
123 | | seqcoll.6 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀...(𝐺‘(♯‘𝐴))) ∖ 𝐴)) → (𝐹‘𝑘) = 𝑍) |
124 | 122, 123 | syldan 280 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...((𝐺‘1) − 1))) → (𝐹‘𝑘) = 𝑍) |
125 | | seqcoll.c |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑘 ∈ 𝑆 ∧ 𝑛 ∈ 𝑆)) → (𝑘 + 𝑛) ∈ 𝑆) |
126 | 28, 29, 41, 75, 124, 71, 125 | seq3id 10385 |
. . . . . . . 8
⊢ (𝜑 → (seq𝑀( + , 𝐹) ↾
(ℤ≥‘(𝐺‘1))) = seq(𝐺‘1)( + , 𝐹)) |
127 | 126 | fveq1d 5463 |
. . . . . . 7
⊢ (𝜑 → ((seq𝑀( + , 𝐹) ↾
(ℤ≥‘(𝐺‘1)))‘(𝐺‘1)) = (seq(𝐺‘1)( + , 𝐹)‘(𝐺‘1))) |
128 | | uzid 9432 |
. . . . . . . . 9
⊢ ((𝐺‘1) ∈ ℤ →
(𝐺‘1) ∈
(ℤ≥‘(𝐺‘1))) |
129 | 77, 128 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → (𝐺‘1) ∈
(ℤ≥‘(𝐺‘1))) |
130 | | fvres 5485 |
. . . . . . . 8
⊢ ((𝐺‘1) ∈
(ℤ≥‘(𝐺‘1)) → ((seq𝑀( + , 𝐹) ↾
(ℤ≥‘(𝐺‘1)))‘(𝐺‘1)) = (seq𝑀( + , 𝐹)‘(𝐺‘1))) |
131 | 129, 130 | syl 14 |
. . . . . . 7
⊢ (𝜑 → ((seq𝑀( + , 𝐹) ↾
(ℤ≥‘(𝐺‘1)))‘(𝐺‘1)) = (seq𝑀( + , 𝐹)‘(𝐺‘1))) |
132 | 92 | adantr 274 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(𝐺‘1))) → 𝑀 ∈
ℤ) |
133 | | eluzelz 9427 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈
(ℤ≥‘(𝐺‘1)) → 𝑘 ∈ ℤ) |
134 | 133 | adantl 275 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(𝐺‘1))) → 𝑘 ∈
ℤ) |
135 | 132 | zred 9265 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(𝐺‘1))) → 𝑀 ∈
ℝ) |
136 | 81 | adantr 274 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(𝐺‘1))) → (𝐺‘1) ∈
ℝ) |
137 | 134 | zred 9265 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(𝐺‘1))) → 𝑘 ∈
ℝ) |
138 | | eluzle 9430 |
. . . . . . . . . . . . . 14
⊢ ((𝐺‘1) ∈
(ℤ≥‘𝑀) → 𝑀 ≤ (𝐺‘1)) |
139 | 41, 138 | syl 14 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀 ≤ (𝐺‘1)) |
140 | 139 | adantr 274 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(𝐺‘1))) → 𝑀 ≤ (𝐺‘1)) |
141 | | eluzle 9430 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈
(ℤ≥‘(𝐺‘1)) → (𝐺‘1) ≤ 𝑘) |
142 | 141 | adantl 275 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(𝐺‘1))) → (𝐺‘1) ≤ 𝑘) |
143 | 135, 136,
137, 140, 142 | letrd 7978 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(𝐺‘1))) → 𝑀 ≤ 𝑘) |
144 | | eluz2 9424 |
. . . . . . . . . . 11
⊢ (𝑘 ∈
(ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘)) |
145 | 132, 134,
143, 144 | syl3anbrc 1166 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(𝐺‘1))) → 𝑘 ∈
(ℤ≥‘𝑀)) |
146 | 145, 71 | syldan 280 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(𝐺‘1))) → (𝐹‘𝑘) ∈ 𝑆) |
147 | 77, 146, 125 | seq3-1 10337 |
. . . . . . . 8
⊢ (𝜑 → (seq(𝐺‘1)( + , 𝐹)‘(𝐺‘1)) = (𝐹‘(𝐺‘1))) |
148 | | fveq2 5461 |
. . . . . . . . . . . 12
⊢ (𝑛 = 1 → (𝐻‘𝑛) = (𝐻‘1)) |
149 | | 2fveq3 5466 |
. . . . . . . . . . . 12
⊢ (𝑛 = 1 → (𝐹‘(𝐺‘𝑛)) = (𝐹‘(𝐺‘1))) |
150 | 148, 149 | eqeq12d 2169 |
. . . . . . . . . . 11
⊢ (𝑛 = 1 → ((𝐻‘𝑛) = (𝐹‘(𝐺‘𝑛)) ↔ (𝐻‘1) = (𝐹‘(𝐺‘1)))) |
151 | 150 | imbi2d 229 |
. . . . . . . . . 10
⊢ (𝑛 = 1 → ((𝜑 → (𝐻‘𝑛) = (𝐹‘(𝐺‘𝑛))) ↔ (𝜑 → (𝐻‘1) = (𝐹‘(𝐺‘1))))) |
152 | | seqcoll.7 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (𝐻‘𝑛) = (𝐹‘(𝐺‘𝑛))) |
153 | 152 | expcom 115 |
. . . . . . . . . 10
⊢ (𝑛 ∈
(1...(♯‘𝐴))
→ (𝜑 → (𝐻‘𝑛) = (𝐹‘(𝐺‘𝑛)))) |
154 | 151, 153 | vtoclga 2775 |
. . . . . . . . 9
⊢ (1 ∈
(1...(♯‘𝐴))
→ (𝜑 → (𝐻‘1) = (𝐹‘(𝐺‘1)))) |
155 | 39, 154 | mpcom 36 |
. . . . . . . 8
⊢ (𝜑 → (𝐻‘1) = (𝐹‘(𝐺‘1))) |
156 | 147, 155 | eqtr4d 2190 |
. . . . . . 7
⊢ (𝜑 → (seq(𝐺‘1)( + , 𝐹)‘(𝐺‘1)) = (𝐻‘1)) |
157 | 127, 131,
156 | 3eqtr3d 2195 |
. . . . . 6
⊢ (𝜑 → (seq𝑀( + , 𝐹)‘(𝐺‘1)) = (𝐻‘1)) |
158 | | 1zzd 9173 |
. . . . . . 7
⊢ (𝜑 → 1 ∈
ℤ) |
159 | | seqcoll.hcl |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘1))
→ (𝐻‘𝑘) ∈ 𝑆) |
160 | 158, 159,
125 | seq3-1 10337 |
. . . . . 6
⊢ (𝜑 → (seq1( + , 𝐻)‘1) = (𝐻‘1)) |
161 | 157, 160 | eqtr4d 2190 |
. . . . 5
⊢ (𝜑 → (seq𝑀( + , 𝐹)‘(𝐺‘1)) = (seq1( + , 𝐻)‘1)) |
162 | 161 | a1d 22 |
. . . 4
⊢ (𝜑 → (1 ∈
(1...(♯‘𝐴))
→ (seq𝑀( + , 𝐹)‘(𝐺‘1)) = (seq1( + , 𝐻)‘1))) |
163 | | simplr 520 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → 𝑚 ∈ ℕ) |
164 | | nnuz 9453 |
. . . . . . . . . . 11
⊢ ℕ =
(ℤ≥‘1) |
165 | 163, 164 | eleqtrdi 2247 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → 𝑚 ∈
(ℤ≥‘1)) |
166 | | nnz 9165 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ ℕ → 𝑚 ∈
ℤ) |
167 | 166 | ad2antlr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → 𝑚 ∈ ℤ) |
168 | | elfzuz3 9903 |
. . . . . . . . . . . 12
⊢ ((𝑚 + 1) ∈
(1...(♯‘𝐴))
→ (♯‘𝐴)
∈ (ℤ≥‘(𝑚 + 1))) |
169 | 168 | adantl 275 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (♯‘𝐴) ∈
(ℤ≥‘(𝑚 + 1))) |
170 | | peano2uzr 9475 |
. . . . . . . . . . 11
⊢ ((𝑚 ∈ ℤ ∧
(♯‘𝐴) ∈
(ℤ≥‘(𝑚 + 1))) → (♯‘𝐴) ∈
(ℤ≥‘𝑚)) |
171 | 167, 169,
170 | syl2anc 409 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (♯‘𝐴) ∈
(ℤ≥‘𝑚)) |
172 | | elfzuzb 9900 |
. . . . . . . . . 10
⊢ (𝑚 ∈
(1...(♯‘𝐴))
↔ (𝑚 ∈
(ℤ≥‘1) ∧ (♯‘𝐴) ∈ (ℤ≥‘𝑚))) |
173 | 165, 171,
172 | sylanbrc 414 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → 𝑚 ∈ (1...(♯‘𝐴))) |
174 | 173 | ex 114 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝑚 + 1) ∈ (1...(♯‘𝐴)) → 𝑚 ∈ (1...(♯‘𝐴)))) |
175 | 174 | imim1d 75 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝑚 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) = (seq1( + , 𝐻)‘𝑚)) → ((𝑚 + 1) ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) = (seq1( + , 𝐻)‘𝑚)))) |
176 | | oveq1 5821 |
. . . . . . . . . 10
⊢
((seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) = (seq1( + , 𝐻)‘𝑚) → ((seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) + (𝐻‘(𝑚 + 1))) = ((seq1( + , 𝐻)‘𝑚) + (𝐻‘(𝑚 + 1)))) |
177 | | simpll 519 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → 𝜑) |
178 | | seqcoll.1b |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑆) → (𝑘 + 𝑍) = 𝑘) |
179 | 177, 178 | sylan 281 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) ∧ 𝑘 ∈ 𝑆) → (𝑘 + 𝑍) = 𝑘) |
180 | 30 | ad2antrr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → 𝐴 ⊆ (ℤ≥‘𝑀)) |
181 | 35 | ad2antrr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → 𝐺:(1...(♯‘𝐴))⟶𝐴) |
182 | 181, 173 | ffvelrnd 5596 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐺‘𝑚) ∈ 𝐴) |
183 | 180, 182 | sseldd 3125 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐺‘𝑚) ∈ (ℤ≥‘𝑀)) |
184 | | nnre 8819 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 ∈ ℕ → 𝑚 ∈
ℝ) |
185 | 184 | ad2antlr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → 𝑚 ∈ ℝ) |
186 | 185 | ltp1d 8780 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → 𝑚 < (𝑚 + 1)) |
187 | 31 | ad2antrr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → 𝐺 Isom < , < ((1...(♯‘𝐴)), 𝐴)) |
188 | | simpr 109 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝑚 + 1) ∈ (1...(♯‘𝐴))) |
189 | | isorel 5749 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐺 Isom < , <
((1...(♯‘𝐴)),
𝐴) ∧ (𝑚 ∈
(1...(♯‘𝐴))
∧ (𝑚 + 1) ∈
(1...(♯‘𝐴))))
→ (𝑚 < (𝑚 + 1) ↔ (𝐺‘𝑚) < (𝐺‘(𝑚 + 1)))) |
190 | 187, 173,
188, 189 | syl12anc 1215 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝑚 < (𝑚 + 1) ↔ (𝐺‘𝑚) < (𝐺‘(𝑚 + 1)))) |
191 | 186, 190 | mpbid 146 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐺‘𝑚) < (𝐺‘(𝑚 + 1))) |
192 | | eluzelz 9427 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐺‘𝑚) ∈ (ℤ≥‘𝑀) → (𝐺‘𝑚) ∈ ℤ) |
193 | 183, 192 | syl 14 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐺‘𝑚) ∈ ℤ) |
194 | 181, 188 | ffvelrnd 5596 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐺‘(𝑚 + 1)) ∈ 𝐴) |
195 | 180, 194 | sseldd 3125 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐺‘(𝑚 + 1)) ∈
(ℤ≥‘𝑀)) |
196 | | eluzelz 9427 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐺‘(𝑚 + 1)) ∈
(ℤ≥‘𝑀) → (𝐺‘(𝑚 + 1)) ∈ ℤ) |
197 | 195, 196 | syl 14 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐺‘(𝑚 + 1)) ∈ ℤ) |
198 | | zltlem1 9203 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐺‘𝑚) ∈ ℤ ∧ (𝐺‘(𝑚 + 1)) ∈ ℤ) → ((𝐺‘𝑚) < (𝐺‘(𝑚 + 1)) ↔ (𝐺‘𝑚) ≤ ((𝐺‘(𝑚 + 1)) − 1))) |
199 | 193, 197,
198 | syl2anc 409 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → ((𝐺‘𝑚) < (𝐺‘(𝑚 + 1)) ↔ (𝐺‘𝑚) ≤ ((𝐺‘(𝑚 + 1)) − 1))) |
200 | 191, 199 | mpbid 146 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐺‘𝑚) ≤ ((𝐺‘(𝑚 + 1)) − 1)) |
201 | | peano2zm 9184 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺‘(𝑚 + 1)) ∈ ℤ → ((𝐺‘(𝑚 + 1)) − 1) ∈
ℤ) |
202 | 197, 201 | syl 14 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → ((𝐺‘(𝑚 + 1)) − 1) ∈
ℤ) |
203 | | eluz 9431 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐺‘𝑚) ∈ ℤ ∧ ((𝐺‘(𝑚 + 1)) − 1) ∈ ℤ) →
(((𝐺‘(𝑚 + 1)) − 1) ∈
(ℤ≥‘(𝐺‘𝑚)) ↔ (𝐺‘𝑚) ≤ ((𝐺‘(𝑚 + 1)) − 1))) |
204 | 193, 202,
203 | syl2anc 409 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (((𝐺‘(𝑚 + 1)) − 1) ∈
(ℤ≥‘(𝐺‘𝑚)) ↔ (𝐺‘𝑚) ≤ ((𝐺‘(𝑚 + 1)) − 1))) |
205 | 200, 204 | mpbird 166 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → ((𝐺‘(𝑚 + 1)) − 1) ∈
(ℤ≥‘(𝐺‘𝑚))) |
206 | | eqid 2154 |
. . . . . . . . . . . . . . . 16
⊢
(ℤ≥‘𝑀) = (ℤ≥‘𝑀) |
207 | 92 | ad2antrr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → 𝑀 ∈ ℤ) |
208 | 177, 71 | sylan 281 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ 𝑆) |
209 | 177, 125 | sylan 281 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) ∧ (𝑘 ∈ 𝑆 ∧ 𝑛 ∈ 𝑆)) → (𝑘 + 𝑛) ∈ 𝑆) |
210 | 206, 207,
208, 209 | seqf 10338 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → seq𝑀( + , 𝐹):(ℤ≥‘𝑀)⟶𝑆) |
211 | 210, 183 | ffvelrnd 5596 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) ∈ 𝑆) |
212 | | simplll 523 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) ∧ 𝑘 ∈ (((𝐺‘𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1))) → 𝜑) |
213 | | elfzuz 9902 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ (((𝐺‘𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1)) → 𝑘 ∈ (ℤ≥‘((𝐺‘𝑚) + 1))) |
214 | | peano2uz 9473 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐺‘𝑚) ∈ (ℤ≥‘𝑀) → ((𝐺‘𝑚) + 1) ∈
(ℤ≥‘𝑀)) |
215 | 183, 214 | syl 14 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → ((𝐺‘𝑚) + 1) ∈
(ℤ≥‘𝑀)) |
216 | | uztrn 9434 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ∈
(ℤ≥‘((𝐺‘𝑚) + 1)) ∧ ((𝐺‘𝑚) + 1) ∈
(ℤ≥‘𝑀)) → 𝑘 ∈ (ℤ≥‘𝑀)) |
217 | 213, 215,
216 | syl2anr 288 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) ∧ 𝑘 ∈ (((𝐺‘𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1))) → 𝑘 ∈ (ℤ≥‘𝑀)) |
218 | 202 | zred 9265 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → ((𝐺‘(𝑚 + 1)) − 1) ∈
ℝ) |
219 | 197 | zred 9265 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐺‘(𝑚 + 1)) ∈ ℝ) |
220 | 82 | ad2antrr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐺‘(♯‘𝐴)) ∈ ℝ) |
221 | 219 | lem1d 8783 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → ((𝐺‘(𝑚 + 1)) − 1) ≤ (𝐺‘(𝑚 + 1))) |
222 | | elfzle2 9908 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑚 + 1) ∈
(1...(♯‘𝐴))
→ (𝑚 + 1) ≤
(♯‘𝐴)) |
223 | 222 | adantl 275 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝑚 + 1) ≤ (♯‘𝐴)) |
224 | 50 | ad2antrr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) →
(1...(♯‘𝐴))
⊆ ℝ*) |
225 | 54 | ad2antrr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → 𝐴 ⊆
ℝ*) |
226 | 56 | ad2antrr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (♯‘𝐴) ∈
(1...(♯‘𝐴))) |
227 | | leisorel 10685 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐺 Isom < , <
((1...(♯‘𝐴)),
𝐴) ∧
((1...(♯‘𝐴))
⊆ ℝ* ∧ 𝐴 ⊆ ℝ*) ∧ ((𝑚 + 1) ∈
(1...(♯‘𝐴))
∧ (♯‘𝐴)
∈ (1...(♯‘𝐴)))) → ((𝑚 + 1) ≤ (♯‘𝐴) ↔ (𝐺‘(𝑚 + 1)) ≤ (𝐺‘(♯‘𝐴)))) |
228 | 187, 224,
225, 188, 226, 227 | syl122anc 1226 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → ((𝑚 + 1) ≤ (♯‘𝐴) ↔ (𝐺‘(𝑚 + 1)) ≤ (𝐺‘(♯‘𝐴)))) |
229 | 223, 228 | mpbid 146 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐺‘(𝑚 + 1)) ≤ (𝐺‘(♯‘𝐴))) |
230 | 218, 219,
220, 221, 229 | letrd 7978 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → ((𝐺‘(𝑚 + 1)) − 1) ≤ (𝐺‘(♯‘𝐴))) |
231 | 63 | ad2antrr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐺‘(♯‘𝐴)) ∈ ℤ) |
232 | | eluz 9431 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐺‘(𝑚 + 1)) − 1) ∈ ℤ ∧ (𝐺‘(♯‘𝐴)) ∈ ℤ) →
((𝐺‘(♯‘𝐴)) ∈
(ℤ≥‘((𝐺‘(𝑚 + 1)) − 1)) ↔ ((𝐺‘(𝑚 + 1)) − 1) ≤ (𝐺‘(♯‘𝐴)))) |
233 | 202, 231,
232 | syl2anc 409 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → ((𝐺‘(♯‘𝐴)) ∈
(ℤ≥‘((𝐺‘(𝑚 + 1)) − 1)) ↔ ((𝐺‘(𝑚 + 1)) − 1) ≤ (𝐺‘(♯‘𝐴)))) |
234 | 230, 233 | mpbird 166 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐺‘(♯‘𝐴)) ∈
(ℤ≥‘((𝐺‘(𝑚 + 1)) − 1))) |
235 | | elfzuz3 9903 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ (((𝐺‘𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1)) → ((𝐺‘(𝑚 + 1)) − 1) ∈
(ℤ≥‘𝑘)) |
236 | | uztrn 9434 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐺‘(♯‘𝐴)) ∈
(ℤ≥‘((𝐺‘(𝑚 + 1)) − 1)) ∧ ((𝐺‘(𝑚 + 1)) − 1) ∈
(ℤ≥‘𝑘)) → (𝐺‘(♯‘𝐴)) ∈
(ℤ≥‘𝑘)) |
237 | 234, 235,
236 | syl2an 287 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) ∧ 𝑘 ∈ (((𝐺‘𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1))) → (𝐺‘(♯‘𝐴)) ∈
(ℤ≥‘𝑘)) |
238 | | elfzuzb 9900 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ (𝑀...(𝐺‘(♯‘𝐴))) ↔ (𝑘 ∈ (ℤ≥‘𝑀) ∧ (𝐺‘(♯‘𝐴)) ∈
(ℤ≥‘𝑘))) |
239 | 217, 237,
238 | sylanbrc 414 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) ∧ 𝑘 ∈ (((𝐺‘𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1))) → 𝑘 ∈ (𝑀...(𝐺‘(♯‘𝐴)))) |
240 | 166 | ad2antlr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → 𝑚 ∈ ℤ) |
241 | 101 | ad2antrr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → ◡𝐺:𝐴⟶(1...(♯‘𝐴))) |
242 | | simprr 522 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → 𝑘 ∈ 𝐴) |
243 | 241, 242 | ffvelrnd 5596 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → (◡𝐺‘𝑘) ∈ (1...(♯‘𝐴))) |
244 | | elfzelz 9906 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((◡𝐺‘𝑘) ∈ (1...(♯‘𝐴)) → (◡𝐺‘𝑘) ∈ ℤ) |
245 | 243, 244 | syl 14 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → (◡𝐺‘𝑘) ∈ ℤ) |
246 | | btwnnz 9237 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑚 ∈ ℤ ∧ 𝑚 < (◡𝐺‘𝑘) ∧ (◡𝐺‘𝑘) < (𝑚 + 1)) → ¬ (◡𝐺‘𝑘) ∈ ℤ) |
247 | 246 | 3expib 1185 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑚 ∈ ℤ → ((𝑚 < (◡𝐺‘𝑘) ∧ (◡𝐺‘𝑘) < (𝑚 + 1)) → ¬ (◡𝐺‘𝑘) ∈ ℤ)) |
248 | 247 | con2d 614 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑚 ∈ ℤ → ((◡𝐺‘𝑘) ∈ ℤ → ¬ (𝑚 < (◡𝐺‘𝑘) ∧ (◡𝐺‘𝑘) < (𝑚 + 1)))) |
249 | 240, 245,
248 | sylc 62 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → ¬ (𝑚 < (◡𝐺‘𝑘) ∧ (◡𝐺‘𝑘) < (𝑚 + 1))) |
250 | 31 | ad2antrr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → 𝐺 Isom < , < ((1...(♯‘𝐴)), 𝐴)) |
251 | 173 | adantrr 471 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → 𝑚 ∈ (1...(♯‘𝐴))) |
252 | | isorel 5749 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐺 Isom < , <
((1...(♯‘𝐴)),
𝐴) ∧ (𝑚 ∈
(1...(♯‘𝐴))
∧ (◡𝐺‘𝑘) ∈ (1...(♯‘𝐴)))) → (𝑚 < (◡𝐺‘𝑘) ↔ (𝐺‘𝑚) < (𝐺‘(◡𝐺‘𝑘)))) |
253 | 250, 251,
243, 252 | syl12anc 1215 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → (𝑚 < (◡𝐺‘𝑘) ↔ (𝐺‘𝑚) < (𝐺‘(◡𝐺‘𝑘)))) |
254 | 33 | ad2antrr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → 𝐺:(1...(♯‘𝐴))–1-1-onto→𝐴) |
255 | 254, 242,
113 | syl2anc 409 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → (𝐺‘(◡𝐺‘𝑘)) = 𝑘) |
256 | 255 | breq2d 3973 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → ((𝐺‘𝑚) < (𝐺‘(◡𝐺‘𝑘)) ↔ (𝐺‘𝑚) < 𝑘)) |
257 | 193 | adantrr 471 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → (𝐺‘𝑚) ∈ ℤ) |
258 | 30 | ad2antrr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → 𝐴 ⊆ (ℤ≥‘𝑀)) |
259 | 258, 242 | sseldd 3125 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → 𝑘 ∈ (ℤ≥‘𝑀)) |
260 | | eluzelz 9427 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → 𝑘 ∈ ℤ) |
261 | 259, 260 | syl 14 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → 𝑘 ∈ ℤ) |
262 | | zltp1le 9200 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐺‘𝑚) ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝐺‘𝑚) < 𝑘 ↔ ((𝐺‘𝑚) + 1) ≤ 𝑘)) |
263 | 257, 261,
262 | syl2anc 409 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → ((𝐺‘𝑚) < 𝑘 ↔ ((𝐺‘𝑚) + 1) ≤ 𝑘)) |
264 | 253, 256,
263 | 3bitrd 213 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → (𝑚 < (◡𝐺‘𝑘) ↔ ((𝐺‘𝑚) + 1) ≤ 𝑘)) |
265 | 188 | adantrr 471 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → (𝑚 + 1) ∈ (1...(♯‘𝐴))) |
266 | | isorel 5749 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐺 Isom < , <
((1...(♯‘𝐴)),
𝐴) ∧ ((◡𝐺‘𝑘) ∈ (1...(♯‘𝐴)) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴)))) → ((◡𝐺‘𝑘) < (𝑚 + 1) ↔ (𝐺‘(◡𝐺‘𝑘)) < (𝐺‘(𝑚 + 1)))) |
267 | 250, 243,
265, 266 | syl12anc 1215 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → ((◡𝐺‘𝑘) < (𝑚 + 1) ↔ (𝐺‘(◡𝐺‘𝑘)) < (𝐺‘(𝑚 + 1)))) |
268 | 255 | breq1d 3971 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → ((𝐺‘(◡𝐺‘𝑘)) < (𝐺‘(𝑚 + 1)) ↔ 𝑘 < (𝐺‘(𝑚 + 1)))) |
269 | 197 | adantrr 471 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → (𝐺‘(𝑚 + 1)) ∈ ℤ) |
270 | | zltlem1 9203 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑘 ∈ ℤ ∧ (𝐺‘(𝑚 + 1)) ∈ ℤ) → (𝑘 < (𝐺‘(𝑚 + 1)) ↔ 𝑘 ≤ ((𝐺‘(𝑚 + 1)) − 1))) |
271 | 261, 269,
270 | syl2anc 409 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → (𝑘 < (𝐺‘(𝑚 + 1)) ↔ 𝑘 ≤ ((𝐺‘(𝑚 + 1)) − 1))) |
272 | 267, 268,
271 | 3bitrd 213 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → ((◡𝐺‘𝑘) < (𝑚 + 1) ↔ 𝑘 ≤ ((𝐺‘(𝑚 + 1)) − 1))) |
273 | 264, 272 | anbi12d 465 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → ((𝑚 < (◡𝐺‘𝑘) ∧ (◡𝐺‘𝑘) < (𝑚 + 1)) ↔ (((𝐺‘𝑚) + 1) ≤ 𝑘 ∧ 𝑘 ≤ ((𝐺‘(𝑚 + 1)) − 1)))) |
274 | 249, 273 | mtbid 662 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → ¬ (((𝐺‘𝑚) + 1) ≤ 𝑘 ∧ 𝑘 ≤ ((𝐺‘(𝑚 + 1)) − 1))) |
275 | 274 | expr 373 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝑘 ∈ 𝐴 → ¬ (((𝐺‘𝑚) + 1) ≤ 𝑘 ∧ 𝑘 ≤ ((𝐺‘(𝑚 + 1)) − 1)))) |
276 | 275 | con2d 614 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → ((((𝐺‘𝑚) + 1) ≤ 𝑘 ∧ 𝑘 ≤ ((𝐺‘(𝑚 + 1)) − 1)) → ¬ 𝑘 ∈ 𝐴)) |
277 | | elfzle1 9907 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ (((𝐺‘𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1)) → ((𝐺‘𝑚) + 1) ≤ 𝑘) |
278 | | elfzle2 9908 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ (((𝐺‘𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1)) → 𝑘 ≤ ((𝐺‘(𝑚 + 1)) − 1)) |
279 | 277, 278 | jca 304 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ (((𝐺‘𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1)) → (((𝐺‘𝑚) + 1) ≤ 𝑘 ∧ 𝑘 ≤ ((𝐺‘(𝑚 + 1)) − 1))) |
280 | 276, 279 | impel 278 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) ∧ 𝑘 ∈ (((𝐺‘𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1))) → ¬ 𝑘 ∈ 𝐴) |
281 | 239, 280 | eldifd 3108 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) ∧ 𝑘 ∈ (((𝐺‘𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1))) → 𝑘 ∈ ((𝑀...(𝐺‘(♯‘𝐴))) ∖ 𝐴)) |
282 | 212, 281,
123 | syl2anc 409 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) ∧ 𝑘 ∈ (((𝐺‘𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1))) → (𝐹‘𝑘) = 𝑍) |
283 | 179, 183,
205, 211, 282, 208, 209 | seq3id2 10386 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) = (seq𝑀( + , 𝐹)‘((𝐺‘(𝑚 + 1)) − 1))) |
284 | 283 | oveq1d 5829 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → ((seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) + (𝐹‘(𝐺‘(𝑚 + 1)))) = ((seq𝑀( + , 𝐹)‘((𝐺‘(𝑚 + 1)) − 1)) + (𝐹‘(𝐺‘(𝑚 + 1))))) |
285 | | fveq2 5461 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = (𝑚 + 1) → (𝐻‘𝑛) = (𝐻‘(𝑚 + 1))) |
286 | | 2fveq3 5466 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = (𝑚 + 1) → (𝐹‘(𝐺‘𝑛)) = (𝐹‘(𝐺‘(𝑚 + 1)))) |
287 | 285, 286 | eqeq12d 2169 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = (𝑚 + 1) → ((𝐻‘𝑛) = (𝐹‘(𝐺‘𝑛)) ↔ (𝐻‘(𝑚 + 1)) = (𝐹‘(𝐺‘(𝑚 + 1))))) |
288 | 287 | imbi2d 229 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = (𝑚 + 1) → ((𝜑 → (𝐻‘𝑛) = (𝐹‘(𝐺‘𝑛))) ↔ (𝜑 → (𝐻‘(𝑚 + 1)) = (𝐹‘(𝐺‘(𝑚 + 1)))))) |
289 | 288, 153 | vtoclga 2775 |
. . . . . . . . . . . . . . 15
⊢ ((𝑚 + 1) ∈
(1...(♯‘𝐴))
→ (𝜑 → (𝐻‘(𝑚 + 1)) = (𝐹‘(𝐺‘(𝑚 + 1))))) |
290 | 289 | impcom 124 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐻‘(𝑚 + 1)) = (𝐹‘(𝐺‘(𝑚 + 1)))) |
291 | 290 | adantlr 469 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐻‘(𝑚 + 1)) = (𝐹‘(𝐺‘(𝑚 + 1)))) |
292 | 291 | oveq2d 5830 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → ((seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) + (𝐻‘(𝑚 + 1))) = ((seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) + (𝐹‘(𝐺‘(𝑚 + 1))))) |
293 | 197 | zcnd 9266 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐺‘(𝑚 + 1)) ∈ ℂ) |
294 | | ax-1cn 7804 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
ℂ |
295 | | npcan 8063 |
. . . . . . . . . . . . . . 15
⊢ (((𝐺‘(𝑚 + 1)) ∈ ℂ ∧ 1 ∈ ℂ)
→ (((𝐺‘(𝑚 + 1)) − 1) + 1) = (𝐺‘(𝑚 + 1))) |
296 | 293, 294,
295 | sylancl 410 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (((𝐺‘(𝑚 + 1)) − 1) + 1) = (𝐺‘(𝑚 + 1))) |
297 | | uztrn 9434 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐺‘(𝑚 + 1)) − 1) ∈
(ℤ≥‘(𝐺‘𝑚)) ∧ (𝐺‘𝑚) ∈ (ℤ≥‘𝑀)) → ((𝐺‘(𝑚 + 1)) − 1) ∈
(ℤ≥‘𝑀)) |
298 | 205, 183,
297 | syl2anc 409 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → ((𝐺‘(𝑚 + 1)) − 1) ∈
(ℤ≥‘𝑀)) |
299 | | eluzp1p1 9443 |
. . . . . . . . . . . . . . 15
⊢ (((𝐺‘(𝑚 + 1)) − 1) ∈
(ℤ≥‘𝑀) → (((𝐺‘(𝑚 + 1)) − 1) + 1) ∈
(ℤ≥‘(𝑀 + 1))) |
300 | 298, 299 | syl 14 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (((𝐺‘(𝑚 + 1)) − 1) + 1) ∈
(ℤ≥‘(𝑀 + 1))) |
301 | 296, 300 | eqeltrrd 2232 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐺‘(𝑚 + 1)) ∈
(ℤ≥‘(𝑀 + 1))) |
302 | 207, 301,
208, 209 | seq3m1 10345 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = ((seq𝑀( + , 𝐹)‘((𝐺‘(𝑚 + 1)) − 1)) + (𝐹‘(𝐺‘(𝑚 + 1))))) |
303 | 284, 292,
302 | 3eqtr4rd 2198 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = ((seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) + (𝐻‘(𝑚 + 1)))) |
304 | 177, 159 | sylan 281 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) ∧ 𝑘 ∈ (ℤ≥‘1))
→ (𝐻‘𝑘) ∈ 𝑆) |
305 | 165, 304,
209 | seq3p1 10339 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (seq1( + , 𝐻)‘(𝑚 + 1)) = ((seq1( + , 𝐻)‘𝑚) + (𝐻‘(𝑚 + 1)))) |
306 | 303, 305 | eqeq12d 2169 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → ((seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = (seq1( + , 𝐻)‘(𝑚 + 1)) ↔ ((seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) + (𝐻‘(𝑚 + 1))) = ((seq1( + , 𝐻)‘𝑚) + (𝐻‘(𝑚 + 1))))) |
307 | 176, 306 | syl5ibr 155 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → ((seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) = (seq1( + , 𝐻)‘𝑚) → (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = (seq1( + , 𝐻)‘(𝑚 + 1)))) |
308 | 307 | ex 114 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝑚 + 1) ∈ (1...(♯‘𝐴)) → ((seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) = (seq1( + , 𝐻)‘𝑚) → (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = (seq1( + , 𝐻)‘(𝑚 + 1))))) |
309 | 308 | a2d 26 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (((𝑚 + 1) ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) = (seq1( + , 𝐻)‘𝑚)) → ((𝑚 + 1) ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = (seq1( + , 𝐻)‘(𝑚 + 1))))) |
310 | 175, 309 | syld 45 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝑚 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) = (seq1( + , 𝐻)‘𝑚)) → ((𝑚 + 1) ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = (seq1( + , 𝐻)‘(𝑚 + 1))))) |
311 | 310 | expcom 115 |
. . . . 5
⊢ (𝑚 ∈ ℕ → (𝜑 → ((𝑚 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) = (seq1( + , 𝐻)‘𝑚)) → ((𝑚 + 1) ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = (seq1( + , 𝐻)‘(𝑚 + 1)))))) |
312 | 311 | a2d 26 |
. . . 4
⊢ (𝑚 ∈ ℕ → ((𝜑 → (𝑚 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) = (seq1( + , 𝐻)‘𝑚))) → (𝜑 → ((𝑚 + 1) ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = (seq1( + , 𝐻)‘(𝑚 + 1)))))) |
313 | 9, 15, 21, 27, 162, 312 | nnind 8828 |
. . 3
⊢ (𝑁 ∈ ℕ → (𝜑 → (𝑁 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑁)) = (seq1( + , 𝐻)‘𝑁)))) |
314 | 3, 313 | mpcom 36 |
. 2
⊢ (𝜑 → (𝑁 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑁)) = (seq1( + , 𝐻)‘𝑁))) |
315 | 1, 314 | mpd 13 |
1
⊢ (𝜑 → (seq𝑀( + , 𝐹)‘(𝐺‘𝑁)) = (seq1( + , 𝐻)‘𝑁)) |