| Step | Hyp | Ref
 | Expression | 
| 1 |   | seqcoll.3 | 
. 2
⊢ (𝜑 → 𝑁 ∈ (1...(♯‘𝐴))) | 
| 2 |   | elfznn 10129 | 
. . . 4
⊢ (𝑁 ∈
(1...(♯‘𝐴))
→ 𝑁 ∈
ℕ) | 
| 3 | 1, 2 | syl 14 | 
. . 3
⊢ (𝜑 → 𝑁 ∈ ℕ) | 
| 4 |   | eleq1 2259 | 
. . . . . 6
⊢ (𝑦 = 1 → (𝑦 ∈ (1...(♯‘𝐴)) ↔ 1 ∈ (1...(♯‘𝐴)))) | 
| 5 |   | 2fveq3 5563 | 
. . . . . . 7
⊢ (𝑦 = 1 → (seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq𝑀( + , 𝐹)‘(𝐺‘1))) | 
| 6 |   | fveq2 5558 | 
. . . . . . 7
⊢ (𝑦 = 1 → (seq1( + , 𝐻)‘𝑦) = (seq1( + , 𝐻)‘1)) | 
| 7 | 5, 6 | eqeq12d 2211 | 
. . . . . 6
⊢ (𝑦 = 1 → ((seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq1( + , 𝐻)‘𝑦) ↔ (seq𝑀( + , 𝐹)‘(𝐺‘1)) = (seq1( + , 𝐻)‘1))) | 
| 8 | 4, 7 | imbi12d 234 | 
. . . . 5
⊢ (𝑦 = 1 → ((𝑦 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq1( + , 𝐻)‘𝑦)) ↔ (1 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘1)) = (seq1( + , 𝐻)‘1)))) | 
| 9 | 8 | imbi2d 230 | 
. . . 4
⊢ (𝑦 = 1 → ((𝜑 → (𝑦 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq1( + , 𝐻)‘𝑦))) ↔ (𝜑 → (1 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘1)) = (seq1( + , 𝐻)‘1))))) | 
| 10 |   | eleq1 2259 | 
. . . . . 6
⊢ (𝑦 = 𝑚 → (𝑦 ∈ (1...(♯‘𝐴)) ↔ 𝑚 ∈ (1...(♯‘𝐴)))) | 
| 11 |   | 2fveq3 5563 | 
. . . . . . 7
⊢ (𝑦 = 𝑚 → (seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq𝑀( + , 𝐹)‘(𝐺‘𝑚))) | 
| 12 |   | fveq2 5558 | 
. . . . . . 7
⊢ (𝑦 = 𝑚 → (seq1( + , 𝐻)‘𝑦) = (seq1( + , 𝐻)‘𝑚)) | 
| 13 | 11, 12 | eqeq12d 2211 | 
. . . . . 6
⊢ (𝑦 = 𝑚 → ((seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq1( + , 𝐻)‘𝑦) ↔ (seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) = (seq1( + , 𝐻)‘𝑚))) | 
| 14 | 10, 13 | imbi12d 234 | 
. . . . 5
⊢ (𝑦 = 𝑚 → ((𝑦 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq1( + , 𝐻)‘𝑦)) ↔ (𝑚 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) = (seq1( + , 𝐻)‘𝑚)))) | 
| 15 | 14 | imbi2d 230 | 
. . . 4
⊢ (𝑦 = 𝑚 → ((𝜑 → (𝑦 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq1( + , 𝐻)‘𝑦))) ↔ (𝜑 → (𝑚 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) = (seq1( + , 𝐻)‘𝑚))))) | 
| 16 |   | eleq1 2259 | 
. . . . . 6
⊢ (𝑦 = (𝑚 + 1) → (𝑦 ∈ (1...(♯‘𝐴)) ↔ (𝑚 + 1) ∈ (1...(♯‘𝐴)))) | 
| 17 |   | 2fveq3 5563 | 
. . . . . . 7
⊢ (𝑦 = (𝑚 + 1) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1)))) | 
| 18 |   | fveq2 5558 | 
. . . . . . 7
⊢ (𝑦 = (𝑚 + 1) → (seq1( + , 𝐻)‘𝑦) = (seq1( + , 𝐻)‘(𝑚 + 1))) | 
| 19 | 17, 18 | eqeq12d 2211 | 
. . . . . 6
⊢ (𝑦 = (𝑚 + 1) → ((seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq1( + , 𝐻)‘𝑦) ↔ (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = (seq1( + , 𝐻)‘(𝑚 + 1)))) | 
| 20 | 16, 19 | imbi12d 234 | 
. . . . 5
⊢ (𝑦 = (𝑚 + 1) → ((𝑦 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq1( + , 𝐻)‘𝑦)) ↔ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = (seq1( + , 𝐻)‘(𝑚 + 1))))) | 
| 21 | 20 | imbi2d 230 | 
. . . 4
⊢ (𝑦 = (𝑚 + 1) → ((𝜑 → (𝑦 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq1( + , 𝐻)‘𝑦))) ↔ (𝜑 → ((𝑚 + 1) ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = (seq1( + , 𝐻)‘(𝑚 + 1)))))) | 
| 22 |   | eleq1 2259 | 
. . . . . 6
⊢ (𝑦 = 𝑁 → (𝑦 ∈ (1...(♯‘𝐴)) ↔ 𝑁 ∈ (1...(♯‘𝐴)))) | 
| 23 |   | 2fveq3 5563 | 
. . . . . . 7
⊢ (𝑦 = 𝑁 → (seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq𝑀( + , 𝐹)‘(𝐺‘𝑁))) | 
| 24 |   | fveq2 5558 | 
. . . . . . 7
⊢ (𝑦 = 𝑁 → (seq1( + , 𝐻)‘𝑦) = (seq1( + , 𝐻)‘𝑁)) | 
| 25 | 23, 24 | eqeq12d 2211 | 
. . . . . 6
⊢ (𝑦 = 𝑁 → ((seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq1( + , 𝐻)‘𝑦) ↔ (seq𝑀( + , 𝐹)‘(𝐺‘𝑁)) = (seq1( + , 𝐻)‘𝑁))) | 
| 26 | 22, 25 | imbi12d 234 | 
. . . . 5
⊢ (𝑦 = 𝑁 → ((𝑦 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq1( + , 𝐻)‘𝑦)) ↔ (𝑁 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑁)) = (seq1( + , 𝐻)‘𝑁)))) | 
| 27 | 26 | imbi2d 230 | 
. . . 4
⊢ (𝑦 = 𝑁 → ((𝜑 → (𝑦 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq1( + , 𝐻)‘𝑦))) ↔ (𝜑 → (𝑁 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑁)) = (seq1( + , 𝐻)‘𝑁))))) | 
| 28 |   | seqcoll.1 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑆) → (𝑍 + 𝑘) = 𝑘) | 
| 29 |   | seqcoll.a | 
. . . . . . . . 9
⊢ (𝜑 → 𝑍 ∈ 𝑆) | 
| 30 |   | seqcoll.4 | 
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ⊆ (ℤ≥‘𝑀)) | 
| 31 |   | seqcoll.2 | 
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐺 Isom < , < ((1...(♯‘𝐴)), 𝐴)) | 
| 32 |   | isof1o 5854 | 
. . . . . . . . . . . . 13
⊢ (𝐺 Isom < , <
((1...(♯‘𝐴)),
𝐴) → 𝐺:(1...(♯‘𝐴))–1-1-onto→𝐴) | 
| 33 | 31, 32 | syl 14 | 
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐺:(1...(♯‘𝐴))–1-1-onto→𝐴) | 
| 34 |   | f1of 5504 | 
. . . . . . . . . . . 12
⊢ (𝐺:(1...(♯‘𝐴))–1-1-onto→𝐴 → 𝐺:(1...(♯‘𝐴))⟶𝐴) | 
| 35 | 33, 34 | syl 14 | 
. . . . . . . . . . 11
⊢ (𝜑 → 𝐺:(1...(♯‘𝐴))⟶𝐴) | 
| 36 |   | elfzuz2 10104 | 
. . . . . . . . . . . . 13
⊢ (𝑁 ∈
(1...(♯‘𝐴))
→ (♯‘𝐴)
∈ (ℤ≥‘1)) | 
| 37 | 1, 36 | syl 14 | 
. . . . . . . . . . . 12
⊢ (𝜑 → (♯‘𝐴) ∈
(ℤ≥‘1)) | 
| 38 |   | eluzfz1 10106 | 
. . . . . . . . . . . 12
⊢
((♯‘𝐴)
∈ (ℤ≥‘1) → 1 ∈
(1...(♯‘𝐴))) | 
| 39 | 37, 38 | syl 14 | 
. . . . . . . . . . 11
⊢ (𝜑 → 1 ∈
(1...(♯‘𝐴))) | 
| 40 | 35, 39 | ffvelcdmd 5698 | 
. . . . . . . . . 10
⊢ (𝜑 → (𝐺‘1) ∈ 𝐴) | 
| 41 | 30, 40 | sseldd 3184 | 
. . . . . . . . 9
⊢ (𝜑 → (𝐺‘1) ∈
(ℤ≥‘𝑀)) | 
| 42 |   | eluzle 9613 | 
. . . . . . . . . . . . 13
⊢
((♯‘𝐴)
∈ (ℤ≥‘1) → 1 ≤ (♯‘𝐴)) | 
| 43 | 37, 42 | syl 14 | 
. . . . . . . . . . . 12
⊢ (𝜑 → 1 ≤
(♯‘𝐴)) | 
| 44 |   | elfzelz 10100 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈
(1...(♯‘𝐴))
→ 𝑘 ∈
ℤ) | 
| 45 | 44 | ssriv 3187 | 
. . . . . . . . . . . . . . . 16
⊢
(1...(♯‘𝐴)) ⊆ ℤ | 
| 46 |   | zssre 9333 | 
. . . . . . . . . . . . . . . 16
⊢ ℤ
⊆ ℝ | 
| 47 | 45, 46 | sstri 3192 | 
. . . . . . . . . . . . . . 15
⊢
(1...(♯‘𝐴)) ⊆ ℝ | 
| 48 | 47 | a1i 9 | 
. . . . . . . . . . . . . 14
⊢ (𝜑 → (1...(♯‘𝐴)) ⊆
ℝ) | 
| 49 |   | ressxr 8070 | 
. . . . . . . . . . . . . 14
⊢ ℝ
⊆ ℝ* | 
| 50 | 48, 49 | sstrdi 3195 | 
. . . . . . . . . . . . 13
⊢ (𝜑 → (1...(♯‘𝐴)) ⊆
ℝ*) | 
| 51 |   | eluzelre 9611 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → 𝑘 ∈ ℝ) | 
| 52 | 51 | ssriv 3187 | 
. . . . . . . . . . . . . . 15
⊢
(ℤ≥‘𝑀) ⊆ ℝ | 
| 53 | 30, 52 | sstrdi 3195 | 
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐴 ⊆ ℝ) | 
| 54 | 53, 49 | sstrdi 3195 | 
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴 ⊆
ℝ*) | 
| 55 |   | eluzfz2 10107 | 
. . . . . . . . . . . . . 14
⊢
((♯‘𝐴)
∈ (ℤ≥‘1) → (♯‘𝐴) ∈ (1...(♯‘𝐴))) | 
| 56 | 37, 55 | syl 14 | 
. . . . . . . . . . . . 13
⊢ (𝜑 → (♯‘𝐴) ∈
(1...(♯‘𝐴))) | 
| 57 |   | leisorel 10929 | 
. . . . . . . . . . . . 13
⊢ ((𝐺 Isom < , <
((1...(♯‘𝐴)),
𝐴) ∧
((1...(♯‘𝐴))
⊆ ℝ* ∧ 𝐴 ⊆ ℝ*) ∧ (1
∈ (1...(♯‘𝐴)) ∧ (♯‘𝐴) ∈ (1...(♯‘𝐴)))) → (1 ≤
(♯‘𝐴) ↔
(𝐺‘1) ≤ (𝐺‘(♯‘𝐴)))) | 
| 58 | 31, 50, 54, 39, 56, 57 | syl122anc 1258 | 
. . . . . . . . . . . 12
⊢ (𝜑 → (1 ≤
(♯‘𝐴) ↔
(𝐺‘1) ≤ (𝐺‘(♯‘𝐴)))) | 
| 59 | 43, 58 | mpbid 147 | 
. . . . . . . . . . 11
⊢ (𝜑 → (𝐺‘1) ≤ (𝐺‘(♯‘𝐴))) | 
| 60 | 35, 56 | ffvelcdmd 5698 | 
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐺‘(♯‘𝐴)) ∈ 𝐴) | 
| 61 | 30, 60 | sseldd 3184 | 
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐺‘(♯‘𝐴)) ∈
(ℤ≥‘𝑀)) | 
| 62 |   | eluzelz 9610 | 
. . . . . . . . . . . . 13
⊢ ((𝐺‘(♯‘𝐴)) ∈
(ℤ≥‘𝑀) → (𝐺‘(♯‘𝐴)) ∈ ℤ) | 
| 63 | 61, 62 | syl 14 | 
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐺‘(♯‘𝐴)) ∈ ℤ) | 
| 64 |   | elfz5 10092 | 
. . . . . . . . . . . 12
⊢ (((𝐺‘1) ∈
(ℤ≥‘𝑀) ∧ (𝐺‘(♯‘𝐴)) ∈ ℤ) → ((𝐺‘1) ∈ (𝑀...(𝐺‘(♯‘𝐴))) ↔ (𝐺‘1) ≤ (𝐺‘(♯‘𝐴)))) | 
| 65 | 41, 63, 64 | syl2anc 411 | 
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐺‘1) ∈ (𝑀...(𝐺‘(♯‘𝐴))) ↔ (𝐺‘1) ≤ (𝐺‘(♯‘𝐴)))) | 
| 66 | 59, 65 | mpbird 167 | 
. . . . . . . . . 10
⊢ (𝜑 → (𝐺‘1) ∈ (𝑀...(𝐺‘(♯‘𝐴)))) | 
| 67 |   | fveq2 5558 | 
. . . . . . . . . . . . 13
⊢ (𝑘 = (𝐺‘1) → (𝐹‘𝑘) = (𝐹‘(𝐺‘1))) | 
| 68 | 67 | eleq1d 2265 | 
. . . . . . . . . . . 12
⊢ (𝑘 = (𝐺‘1) → ((𝐹‘𝑘) ∈ 𝑆 ↔ (𝐹‘(𝐺‘1)) ∈ 𝑆)) | 
| 69 | 68 | imbi2d 230 | 
. . . . . . . . . . 11
⊢ (𝑘 = (𝐺‘1) → ((𝜑 → (𝐹‘𝑘) ∈ 𝑆) ↔ (𝜑 → (𝐹‘(𝐺‘1)) ∈ 𝑆))) | 
| 70 |   | elfzuz 10096 | 
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (𝑀...(𝐺‘(♯‘𝐴))) → 𝑘 ∈ (ℤ≥‘𝑀)) | 
| 71 |   | seqcoll.5 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ 𝑆) | 
| 72 | 71 | expcom 116 | 
. . . . . . . . . . . 12
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → (𝜑 → (𝐹‘𝑘) ∈ 𝑆)) | 
| 73 | 70, 72 | syl 14 | 
. . . . . . . . . . 11
⊢ (𝑘 ∈ (𝑀...(𝐺‘(♯‘𝐴))) → (𝜑 → (𝐹‘𝑘) ∈ 𝑆)) | 
| 74 | 69, 73 | vtoclga 2830 | 
. . . . . . . . . 10
⊢ ((𝐺‘1) ∈ (𝑀...(𝐺‘(♯‘𝐴))) → (𝜑 → (𝐹‘(𝐺‘1)) ∈ 𝑆)) | 
| 75 | 66, 74 | mpcom 36 | 
. . . . . . . . 9
⊢ (𝜑 → (𝐹‘(𝐺‘1)) ∈ 𝑆) | 
| 76 |   | eluzelz 9610 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐺‘1) ∈
(ℤ≥‘𝑀) → (𝐺‘1) ∈ ℤ) | 
| 77 | 41, 76 | syl 14 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐺‘1) ∈ ℤ) | 
| 78 |   | peano2zm 9364 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺‘1) ∈ ℤ →
((𝐺‘1) − 1)
∈ ℤ) | 
| 79 | 77, 78 | syl 14 | 
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝐺‘1) − 1) ∈
ℤ) | 
| 80 | 79 | zred 9448 | 
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝐺‘1) − 1) ∈
ℝ) | 
| 81 | 77 | zred 9448 | 
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐺‘1) ∈ ℝ) | 
| 82 | 63 | zred 9448 | 
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐺‘(♯‘𝐴)) ∈ ℝ) | 
| 83 | 81 | lem1d 8960 | 
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝐺‘1) − 1) ≤ (𝐺‘1)) | 
| 84 | 80, 81, 82, 83, 59 | letrd 8150 | 
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝐺‘1) − 1) ≤ (𝐺‘(♯‘𝐴))) | 
| 85 |   | eluz 9614 | 
. . . . . . . . . . . . . . 15
⊢ ((((𝐺‘1) − 1) ∈
ℤ ∧ (𝐺‘(♯‘𝐴)) ∈ ℤ) → ((𝐺‘(♯‘𝐴)) ∈
(ℤ≥‘((𝐺‘1) − 1)) ↔ ((𝐺‘1) − 1) ≤ (𝐺‘(♯‘𝐴)))) | 
| 86 | 79, 63, 85 | syl2anc 411 | 
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝐺‘(♯‘𝐴)) ∈
(ℤ≥‘((𝐺‘1) − 1)) ↔ ((𝐺‘1) − 1) ≤ (𝐺‘(♯‘𝐴)))) | 
| 87 | 84, 86 | mpbird 167 | 
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐺‘(♯‘𝐴)) ∈
(ℤ≥‘((𝐺‘1) − 1))) | 
| 88 |   | fzss2 10139 | 
. . . . . . . . . . . . 13
⊢ ((𝐺‘(♯‘𝐴)) ∈
(ℤ≥‘((𝐺‘1) − 1)) → (𝑀...((𝐺‘1) − 1)) ⊆ (𝑀...(𝐺‘(♯‘𝐴)))) | 
| 89 | 87, 88 | syl 14 | 
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑀...((𝐺‘1) − 1)) ⊆ (𝑀...(𝐺‘(♯‘𝐴)))) | 
| 90 | 89 | sselda 3183 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...((𝐺‘1) − 1))) → 𝑘 ∈ (𝑀...(𝐺‘(♯‘𝐴)))) | 
| 91 |   | eluzel2 9606 | 
. . . . . . . . . . . . . . 15
⊢ ((𝐺‘1) ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | 
| 92 | 41, 91 | syl 14 | 
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑀 ∈ ℤ) | 
| 93 |   | elfzm11 10166 | 
. . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ ℤ ∧ (𝐺‘1) ∈ ℤ) →
(𝑘 ∈ (𝑀...((𝐺‘1) − 1)) ↔ (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ∧ 𝑘 < (𝐺‘1)))) | 
| 94 | 92, 77, 93 | syl2anc 411 | 
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑘 ∈ (𝑀...((𝐺‘1) − 1)) ↔ (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ∧ 𝑘 < (𝐺‘1)))) | 
| 95 |   | simp3 1001 | 
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ∧ 𝑘 < (𝐺‘1)) → 𝑘 < (𝐺‘1)) | 
| 96 | 81 | adantr 276 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐺‘1) ∈ ℝ) | 
| 97 | 53 | sselda 3183 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ ℝ) | 
| 98 |   | f1ocnv 5517 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐺:(1...(♯‘𝐴))–1-1-onto→𝐴 → ◡𝐺:𝐴–1-1-onto→(1...(♯‘𝐴))) | 
| 99 | 33, 98 | syl 14 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ◡𝐺:𝐴–1-1-onto→(1...(♯‘𝐴))) | 
| 100 |   | f1of 5504 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (◡𝐺:𝐴–1-1-onto→(1...(♯‘𝐴)) → ◡𝐺:𝐴⟶(1...(♯‘𝐴))) | 
| 101 | 99, 100 | syl 14 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ◡𝐺:𝐴⟶(1...(♯‘𝐴))) | 
| 102 | 101 | ffvelcdmda 5697 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (◡𝐺‘𝑘) ∈ (1...(♯‘𝐴))) | 
| 103 |   | elfznn 10129 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((◡𝐺‘𝑘) ∈ (1...(♯‘𝐴)) → (◡𝐺‘𝑘) ∈ ℕ) | 
| 104 | 102, 103 | syl 14 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (◡𝐺‘𝑘) ∈ ℕ) | 
| 105 | 104 | nnge1d 9033 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 1 ≤ (◡𝐺‘𝑘)) | 
| 106 | 31 | adantr 276 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐺 Isom < , < ((1...(♯‘𝐴)), 𝐴)) | 
| 107 | 50 | adantr 276 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (1...(♯‘𝐴)) ⊆
ℝ*) | 
| 108 | 54 | adantr 276 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐴 ⊆
ℝ*) | 
| 109 | 39 | adantr 276 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 1 ∈ (1...(♯‘𝐴))) | 
| 110 |   | leisorel 10929 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐺 Isom < , <
((1...(♯‘𝐴)),
𝐴) ∧
((1...(♯‘𝐴))
⊆ ℝ* ∧ 𝐴 ⊆ ℝ*) ∧ (1
∈ (1...(♯‘𝐴)) ∧ (◡𝐺‘𝑘) ∈ (1...(♯‘𝐴)))) → (1 ≤ (◡𝐺‘𝑘) ↔ (𝐺‘1) ≤ (𝐺‘(◡𝐺‘𝑘)))) | 
| 111 | 106, 107,
108, 109, 102, 110 | syl122anc 1258 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (1 ≤ (◡𝐺‘𝑘) ↔ (𝐺‘1) ≤ (𝐺‘(◡𝐺‘𝑘)))) | 
| 112 | 105, 111 | mpbid 147 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐺‘1) ≤ (𝐺‘(◡𝐺‘𝑘))) | 
| 113 |   | f1ocnvfv2 5825 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐺:(1...(♯‘𝐴))–1-1-onto→𝐴 ∧ 𝑘 ∈ 𝐴) → (𝐺‘(◡𝐺‘𝑘)) = 𝑘) | 
| 114 | 33, 113 | sylan 283 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐺‘(◡𝐺‘𝑘)) = 𝑘) | 
| 115 | 112, 114 | breqtrd 4059 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐺‘1) ≤ 𝑘) | 
| 116 | 96, 97, 115 | lensymd 8148 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ¬ 𝑘 < (𝐺‘1)) | 
| 117 | 116 | ex 115 | 
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑘 ∈ 𝐴 → ¬ 𝑘 < (𝐺‘1))) | 
| 118 | 117 | con2d 625 | 
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑘 < (𝐺‘1) → ¬ 𝑘 ∈ 𝐴)) | 
| 119 | 95, 118 | syl5 32 | 
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ∧ 𝑘 < (𝐺‘1)) → ¬ 𝑘 ∈ 𝐴)) | 
| 120 | 94, 119 | sylbid 150 | 
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑘 ∈ (𝑀...((𝐺‘1) − 1)) → ¬ 𝑘 ∈ 𝐴)) | 
| 121 | 120 | imp 124 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...((𝐺‘1) − 1))) → ¬ 𝑘 ∈ 𝐴) | 
| 122 | 90, 121 | eldifd 3167 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...((𝐺‘1) − 1))) → 𝑘 ∈ ((𝑀...(𝐺‘(♯‘𝐴))) ∖ 𝐴)) | 
| 123 |   | seqcoll.6 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀...(𝐺‘(♯‘𝐴))) ∖ 𝐴)) → (𝐹‘𝑘) = 𝑍) | 
| 124 | 122, 123 | syldan 282 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...((𝐺‘1) − 1))) → (𝐹‘𝑘) = 𝑍) | 
| 125 |   | seqcoll.c | 
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑘 ∈ 𝑆 ∧ 𝑛 ∈ 𝑆)) → (𝑘 + 𝑛) ∈ 𝑆) | 
| 126 | 28, 29, 41, 75, 124, 71, 125 | seq3id 10617 | 
. . . . . . . 8
⊢ (𝜑 → (seq𝑀( + , 𝐹) ↾
(ℤ≥‘(𝐺‘1))) = seq(𝐺‘1)( + , 𝐹)) | 
| 127 | 126 | fveq1d 5560 | 
. . . . . . 7
⊢ (𝜑 → ((seq𝑀( + , 𝐹) ↾
(ℤ≥‘(𝐺‘1)))‘(𝐺‘1)) = (seq(𝐺‘1)( + , 𝐹)‘(𝐺‘1))) | 
| 128 |   | uzid 9615 | 
. . . . . . . . 9
⊢ ((𝐺‘1) ∈ ℤ →
(𝐺‘1) ∈
(ℤ≥‘(𝐺‘1))) | 
| 129 | 77, 128 | syl 14 | 
. . . . . . . 8
⊢ (𝜑 → (𝐺‘1) ∈
(ℤ≥‘(𝐺‘1))) | 
| 130 |   | fvres 5582 | 
. . . . . . . 8
⊢ ((𝐺‘1) ∈
(ℤ≥‘(𝐺‘1)) → ((seq𝑀( + , 𝐹) ↾
(ℤ≥‘(𝐺‘1)))‘(𝐺‘1)) = (seq𝑀( + , 𝐹)‘(𝐺‘1))) | 
| 131 | 129, 130 | syl 14 | 
. . . . . . 7
⊢ (𝜑 → ((seq𝑀( + , 𝐹) ↾
(ℤ≥‘(𝐺‘1)))‘(𝐺‘1)) = (seq𝑀( + , 𝐹)‘(𝐺‘1))) | 
| 132 | 92 | adantr 276 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(𝐺‘1))) → 𝑀 ∈
ℤ) | 
| 133 |   | eluzelz 9610 | 
. . . . . . . . . . . 12
⊢ (𝑘 ∈
(ℤ≥‘(𝐺‘1)) → 𝑘 ∈ ℤ) | 
| 134 | 133 | adantl 277 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(𝐺‘1))) → 𝑘 ∈
ℤ) | 
| 135 | 132 | zred 9448 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(𝐺‘1))) → 𝑀 ∈
ℝ) | 
| 136 | 81 | adantr 276 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(𝐺‘1))) → (𝐺‘1) ∈
ℝ) | 
| 137 | 134 | zred 9448 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(𝐺‘1))) → 𝑘 ∈
ℝ) | 
| 138 |   | eluzle 9613 | 
. . . . . . . . . . . . . 14
⊢ ((𝐺‘1) ∈
(ℤ≥‘𝑀) → 𝑀 ≤ (𝐺‘1)) | 
| 139 | 41, 138 | syl 14 | 
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀 ≤ (𝐺‘1)) | 
| 140 | 139 | adantr 276 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(𝐺‘1))) → 𝑀 ≤ (𝐺‘1)) | 
| 141 |   | eluzle 9613 | 
. . . . . . . . . . . . 13
⊢ (𝑘 ∈
(ℤ≥‘(𝐺‘1)) → (𝐺‘1) ≤ 𝑘) | 
| 142 | 141 | adantl 277 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(𝐺‘1))) → (𝐺‘1) ≤ 𝑘) | 
| 143 | 135, 136,
137, 140, 142 | letrd 8150 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(𝐺‘1))) → 𝑀 ≤ 𝑘) | 
| 144 |   | eluz2 9607 | 
. . . . . . . . . . 11
⊢ (𝑘 ∈
(ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘)) | 
| 145 | 132, 134,
143, 144 | syl3anbrc 1183 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(𝐺‘1))) → 𝑘 ∈
(ℤ≥‘𝑀)) | 
| 146 | 145, 71 | syldan 282 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(𝐺‘1))) → (𝐹‘𝑘) ∈ 𝑆) | 
| 147 | 77, 146, 125 | seq3-1 10554 | 
. . . . . . . 8
⊢ (𝜑 → (seq(𝐺‘1)( + , 𝐹)‘(𝐺‘1)) = (𝐹‘(𝐺‘1))) | 
| 148 |   | fveq2 5558 | 
. . . . . . . . . . . 12
⊢ (𝑛 = 1 → (𝐻‘𝑛) = (𝐻‘1)) | 
| 149 |   | 2fveq3 5563 | 
. . . . . . . . . . . 12
⊢ (𝑛 = 1 → (𝐹‘(𝐺‘𝑛)) = (𝐹‘(𝐺‘1))) | 
| 150 | 148, 149 | eqeq12d 2211 | 
. . . . . . . . . . 11
⊢ (𝑛 = 1 → ((𝐻‘𝑛) = (𝐹‘(𝐺‘𝑛)) ↔ (𝐻‘1) = (𝐹‘(𝐺‘1)))) | 
| 151 | 150 | imbi2d 230 | 
. . . . . . . . . 10
⊢ (𝑛 = 1 → ((𝜑 → (𝐻‘𝑛) = (𝐹‘(𝐺‘𝑛))) ↔ (𝜑 → (𝐻‘1) = (𝐹‘(𝐺‘1))))) | 
| 152 |   | seqcoll.7 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (𝐻‘𝑛) = (𝐹‘(𝐺‘𝑛))) | 
| 153 | 152 | expcom 116 | 
. . . . . . . . . 10
⊢ (𝑛 ∈
(1...(♯‘𝐴))
→ (𝜑 → (𝐻‘𝑛) = (𝐹‘(𝐺‘𝑛)))) | 
| 154 | 151, 153 | vtoclga 2830 | 
. . . . . . . . 9
⊢ (1 ∈
(1...(♯‘𝐴))
→ (𝜑 → (𝐻‘1) = (𝐹‘(𝐺‘1)))) | 
| 155 | 39, 154 | mpcom 36 | 
. . . . . . . 8
⊢ (𝜑 → (𝐻‘1) = (𝐹‘(𝐺‘1))) | 
| 156 | 147, 155 | eqtr4d 2232 | 
. . . . . . 7
⊢ (𝜑 → (seq(𝐺‘1)( + , 𝐹)‘(𝐺‘1)) = (𝐻‘1)) | 
| 157 | 127, 131,
156 | 3eqtr3d 2237 | 
. . . . . 6
⊢ (𝜑 → (seq𝑀( + , 𝐹)‘(𝐺‘1)) = (𝐻‘1)) | 
| 158 |   | 1zzd 9353 | 
. . . . . . 7
⊢ (𝜑 → 1 ∈
ℤ) | 
| 159 |   | seqcoll.hcl | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘1))
→ (𝐻‘𝑘) ∈ 𝑆) | 
| 160 | 158, 159,
125 | seq3-1 10554 | 
. . . . . 6
⊢ (𝜑 → (seq1( + , 𝐻)‘1) = (𝐻‘1)) | 
| 161 | 157, 160 | eqtr4d 2232 | 
. . . . 5
⊢ (𝜑 → (seq𝑀( + , 𝐹)‘(𝐺‘1)) = (seq1( + , 𝐻)‘1)) | 
| 162 | 161 | a1d 22 | 
. . . 4
⊢ (𝜑 → (1 ∈
(1...(♯‘𝐴))
→ (seq𝑀( + , 𝐹)‘(𝐺‘1)) = (seq1( + , 𝐻)‘1))) | 
| 163 |   | simplr 528 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → 𝑚 ∈ ℕ) | 
| 164 |   | nnuz 9637 | 
. . . . . . . . . . 11
⊢ ℕ =
(ℤ≥‘1) | 
| 165 | 163, 164 | eleqtrdi 2289 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → 𝑚 ∈
(ℤ≥‘1)) | 
| 166 |   | nnz 9345 | 
. . . . . . . . . . . 12
⊢ (𝑚 ∈ ℕ → 𝑚 ∈
ℤ) | 
| 167 | 166 | ad2antlr 489 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → 𝑚 ∈ ℤ) | 
| 168 |   | elfzuz3 10097 | 
. . . . . . . . . . . 12
⊢ ((𝑚 + 1) ∈
(1...(♯‘𝐴))
→ (♯‘𝐴)
∈ (ℤ≥‘(𝑚 + 1))) | 
| 169 | 168 | adantl 277 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (♯‘𝐴) ∈
(ℤ≥‘(𝑚 + 1))) | 
| 170 |   | peano2uzr 9659 | 
. . . . . . . . . . 11
⊢ ((𝑚 ∈ ℤ ∧
(♯‘𝐴) ∈
(ℤ≥‘(𝑚 + 1))) → (♯‘𝐴) ∈
(ℤ≥‘𝑚)) | 
| 171 | 167, 169,
170 | syl2anc 411 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (♯‘𝐴) ∈
(ℤ≥‘𝑚)) | 
| 172 |   | elfzuzb 10094 | 
. . . . . . . . . 10
⊢ (𝑚 ∈
(1...(♯‘𝐴))
↔ (𝑚 ∈
(ℤ≥‘1) ∧ (♯‘𝐴) ∈ (ℤ≥‘𝑚))) | 
| 173 | 165, 171,
172 | sylanbrc 417 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → 𝑚 ∈ (1...(♯‘𝐴))) | 
| 174 | 173 | ex 115 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝑚 + 1) ∈ (1...(♯‘𝐴)) → 𝑚 ∈ (1...(♯‘𝐴)))) | 
| 175 | 174 | imim1d 75 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝑚 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) = (seq1( + , 𝐻)‘𝑚)) → ((𝑚 + 1) ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) = (seq1( + , 𝐻)‘𝑚)))) | 
| 176 |   | oveq1 5929 | 
. . . . . . . . . 10
⊢
((seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) = (seq1( + , 𝐻)‘𝑚) → ((seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) + (𝐻‘(𝑚 + 1))) = ((seq1( + , 𝐻)‘𝑚) + (𝐻‘(𝑚 + 1)))) | 
| 177 |   | simpll 527 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → 𝜑) | 
| 178 |   | seqcoll.1b | 
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑆) → (𝑘 + 𝑍) = 𝑘) | 
| 179 | 177, 178 | sylan 283 | 
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) ∧ 𝑘 ∈ 𝑆) → (𝑘 + 𝑍) = 𝑘) | 
| 180 | 30 | ad2antrr 488 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → 𝐴 ⊆ (ℤ≥‘𝑀)) | 
| 181 | 35 | ad2antrr 488 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → 𝐺:(1...(♯‘𝐴))⟶𝐴) | 
| 182 | 181, 173 | ffvelcdmd 5698 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐺‘𝑚) ∈ 𝐴) | 
| 183 | 180, 182 | sseldd 3184 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐺‘𝑚) ∈ (ℤ≥‘𝑀)) | 
| 184 |   | nnre 8997 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 ∈ ℕ → 𝑚 ∈
ℝ) | 
| 185 | 184 | ad2antlr 489 | 
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → 𝑚 ∈ ℝ) | 
| 186 | 185 | ltp1d 8957 | 
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → 𝑚 < (𝑚 + 1)) | 
| 187 | 31 | ad2antrr 488 | 
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → 𝐺 Isom < , < ((1...(♯‘𝐴)), 𝐴)) | 
| 188 |   | simpr 110 | 
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝑚 + 1) ∈ (1...(♯‘𝐴))) | 
| 189 |   | isorel 5855 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐺 Isom < , <
((1...(♯‘𝐴)),
𝐴) ∧ (𝑚 ∈
(1...(♯‘𝐴))
∧ (𝑚 + 1) ∈
(1...(♯‘𝐴))))
→ (𝑚 < (𝑚 + 1) ↔ (𝐺‘𝑚) < (𝐺‘(𝑚 + 1)))) | 
| 190 | 187, 173,
188, 189 | syl12anc 1247 | 
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝑚 < (𝑚 + 1) ↔ (𝐺‘𝑚) < (𝐺‘(𝑚 + 1)))) | 
| 191 | 186, 190 | mpbid 147 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐺‘𝑚) < (𝐺‘(𝑚 + 1))) | 
| 192 |   | eluzelz 9610 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐺‘𝑚) ∈ (ℤ≥‘𝑀) → (𝐺‘𝑚) ∈ ℤ) | 
| 193 | 183, 192 | syl 14 | 
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐺‘𝑚) ∈ ℤ) | 
| 194 | 181, 188 | ffvelcdmd 5698 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐺‘(𝑚 + 1)) ∈ 𝐴) | 
| 195 | 180, 194 | sseldd 3184 | 
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐺‘(𝑚 + 1)) ∈
(ℤ≥‘𝑀)) | 
| 196 |   | eluzelz 9610 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐺‘(𝑚 + 1)) ∈
(ℤ≥‘𝑀) → (𝐺‘(𝑚 + 1)) ∈ ℤ) | 
| 197 | 195, 196 | syl 14 | 
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐺‘(𝑚 + 1)) ∈ ℤ) | 
| 198 |   | zltlem1 9383 | 
. . . . . . . . . . . . . . . . 17
⊢ (((𝐺‘𝑚) ∈ ℤ ∧ (𝐺‘(𝑚 + 1)) ∈ ℤ) → ((𝐺‘𝑚) < (𝐺‘(𝑚 + 1)) ↔ (𝐺‘𝑚) ≤ ((𝐺‘(𝑚 + 1)) − 1))) | 
| 199 | 193, 197,
198 | syl2anc 411 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → ((𝐺‘𝑚) < (𝐺‘(𝑚 + 1)) ↔ (𝐺‘𝑚) ≤ ((𝐺‘(𝑚 + 1)) − 1))) | 
| 200 | 191, 199 | mpbid 147 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐺‘𝑚) ≤ ((𝐺‘(𝑚 + 1)) − 1)) | 
| 201 |   | peano2zm 9364 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺‘(𝑚 + 1)) ∈ ℤ → ((𝐺‘(𝑚 + 1)) − 1) ∈
ℤ) | 
| 202 | 197, 201 | syl 14 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → ((𝐺‘(𝑚 + 1)) − 1) ∈
ℤ) | 
| 203 |   | eluz 9614 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝐺‘𝑚) ∈ ℤ ∧ ((𝐺‘(𝑚 + 1)) − 1) ∈ ℤ) →
(((𝐺‘(𝑚 + 1)) − 1) ∈
(ℤ≥‘(𝐺‘𝑚)) ↔ (𝐺‘𝑚) ≤ ((𝐺‘(𝑚 + 1)) − 1))) | 
| 204 | 193, 202,
203 | syl2anc 411 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (((𝐺‘(𝑚 + 1)) − 1) ∈
(ℤ≥‘(𝐺‘𝑚)) ↔ (𝐺‘𝑚) ≤ ((𝐺‘(𝑚 + 1)) − 1))) | 
| 205 | 200, 204 | mpbird 167 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → ((𝐺‘(𝑚 + 1)) − 1) ∈
(ℤ≥‘(𝐺‘𝑚))) | 
| 206 |   | eqid 2196 | 
. . . . . . . . . . . . . . . 16
⊢
(ℤ≥‘𝑀) = (ℤ≥‘𝑀) | 
| 207 | 92 | ad2antrr 488 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → 𝑀 ∈ ℤ) | 
| 208 | 177, 71 | sylan 283 | 
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ 𝑆) | 
| 209 | 177, 125 | sylan 283 | 
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) ∧ (𝑘 ∈ 𝑆 ∧ 𝑛 ∈ 𝑆)) → (𝑘 + 𝑛) ∈ 𝑆) | 
| 210 | 206, 207,
208, 209 | seqf 10556 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → seq𝑀( + , 𝐹):(ℤ≥‘𝑀)⟶𝑆) | 
| 211 | 210, 183 | ffvelcdmd 5698 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) ∈ 𝑆) | 
| 212 |   | simplll 533 | 
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) ∧ 𝑘 ∈ (((𝐺‘𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1))) → 𝜑) | 
| 213 |   | elfzuz 10096 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ (((𝐺‘𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1)) → 𝑘 ∈ (ℤ≥‘((𝐺‘𝑚) + 1))) | 
| 214 |   | peano2uz 9657 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐺‘𝑚) ∈ (ℤ≥‘𝑀) → ((𝐺‘𝑚) + 1) ∈
(ℤ≥‘𝑀)) | 
| 215 | 183, 214 | syl 14 | 
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → ((𝐺‘𝑚) + 1) ∈
(ℤ≥‘𝑀)) | 
| 216 |   | uztrn 9618 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ∈
(ℤ≥‘((𝐺‘𝑚) + 1)) ∧ ((𝐺‘𝑚) + 1) ∈
(ℤ≥‘𝑀)) → 𝑘 ∈ (ℤ≥‘𝑀)) | 
| 217 | 213, 215,
216 | syl2anr 290 | 
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) ∧ 𝑘 ∈ (((𝐺‘𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1))) → 𝑘 ∈ (ℤ≥‘𝑀)) | 
| 218 | 202 | zred 9448 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → ((𝐺‘(𝑚 + 1)) − 1) ∈
ℝ) | 
| 219 | 197 | zred 9448 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐺‘(𝑚 + 1)) ∈ ℝ) | 
| 220 | 82 | ad2antrr 488 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐺‘(♯‘𝐴)) ∈ ℝ) | 
| 221 | 219 | lem1d 8960 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → ((𝐺‘(𝑚 + 1)) − 1) ≤ (𝐺‘(𝑚 + 1))) | 
| 222 |   | elfzle2 10103 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑚 + 1) ∈
(1...(♯‘𝐴))
→ (𝑚 + 1) ≤
(♯‘𝐴)) | 
| 223 | 222 | adantl 277 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝑚 + 1) ≤ (♯‘𝐴)) | 
| 224 | 50 | ad2antrr 488 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) →
(1...(♯‘𝐴))
⊆ ℝ*) | 
| 225 | 54 | ad2antrr 488 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → 𝐴 ⊆
ℝ*) | 
| 226 | 56 | ad2antrr 488 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (♯‘𝐴) ∈
(1...(♯‘𝐴))) | 
| 227 |   | leisorel 10929 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐺 Isom < , <
((1...(♯‘𝐴)),
𝐴) ∧
((1...(♯‘𝐴))
⊆ ℝ* ∧ 𝐴 ⊆ ℝ*) ∧ ((𝑚 + 1) ∈
(1...(♯‘𝐴))
∧ (♯‘𝐴)
∈ (1...(♯‘𝐴)))) → ((𝑚 + 1) ≤ (♯‘𝐴) ↔ (𝐺‘(𝑚 + 1)) ≤ (𝐺‘(♯‘𝐴)))) | 
| 228 | 187, 224,
225, 188, 226, 227 | syl122anc 1258 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → ((𝑚 + 1) ≤ (♯‘𝐴) ↔ (𝐺‘(𝑚 + 1)) ≤ (𝐺‘(♯‘𝐴)))) | 
| 229 | 223, 228 | mpbid 147 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐺‘(𝑚 + 1)) ≤ (𝐺‘(♯‘𝐴))) | 
| 230 | 218, 219,
220, 221, 229 | letrd 8150 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → ((𝐺‘(𝑚 + 1)) − 1) ≤ (𝐺‘(♯‘𝐴))) | 
| 231 | 63 | ad2antrr 488 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐺‘(♯‘𝐴)) ∈ ℤ) | 
| 232 |   | eluz 9614 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐺‘(𝑚 + 1)) − 1) ∈ ℤ ∧ (𝐺‘(♯‘𝐴)) ∈ ℤ) →
((𝐺‘(♯‘𝐴)) ∈
(ℤ≥‘((𝐺‘(𝑚 + 1)) − 1)) ↔ ((𝐺‘(𝑚 + 1)) − 1) ≤ (𝐺‘(♯‘𝐴)))) | 
| 233 | 202, 231,
232 | syl2anc 411 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → ((𝐺‘(♯‘𝐴)) ∈
(ℤ≥‘((𝐺‘(𝑚 + 1)) − 1)) ↔ ((𝐺‘(𝑚 + 1)) − 1) ≤ (𝐺‘(♯‘𝐴)))) | 
| 234 | 230, 233 | mpbird 167 | 
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐺‘(♯‘𝐴)) ∈
(ℤ≥‘((𝐺‘(𝑚 + 1)) − 1))) | 
| 235 |   | elfzuz3 10097 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ (((𝐺‘𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1)) → ((𝐺‘(𝑚 + 1)) − 1) ∈
(ℤ≥‘𝑘)) | 
| 236 |   | uztrn 9618 | 
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐺‘(♯‘𝐴)) ∈
(ℤ≥‘((𝐺‘(𝑚 + 1)) − 1)) ∧ ((𝐺‘(𝑚 + 1)) − 1) ∈
(ℤ≥‘𝑘)) → (𝐺‘(♯‘𝐴)) ∈
(ℤ≥‘𝑘)) | 
| 237 | 234, 235,
236 | syl2an 289 | 
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) ∧ 𝑘 ∈ (((𝐺‘𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1))) → (𝐺‘(♯‘𝐴)) ∈
(ℤ≥‘𝑘)) | 
| 238 |   | elfzuzb 10094 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ (𝑀...(𝐺‘(♯‘𝐴))) ↔ (𝑘 ∈ (ℤ≥‘𝑀) ∧ (𝐺‘(♯‘𝐴)) ∈
(ℤ≥‘𝑘))) | 
| 239 | 217, 237,
238 | sylanbrc 417 | 
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) ∧ 𝑘 ∈ (((𝐺‘𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1))) → 𝑘 ∈ (𝑀...(𝐺‘(♯‘𝐴)))) | 
| 240 | 166 | ad2antlr 489 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → 𝑚 ∈ ℤ) | 
| 241 | 101 | ad2antrr 488 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → ◡𝐺:𝐴⟶(1...(♯‘𝐴))) | 
| 242 |   | simprr 531 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → 𝑘 ∈ 𝐴) | 
| 243 | 241, 242 | ffvelcdmd 5698 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → (◡𝐺‘𝑘) ∈ (1...(♯‘𝐴))) | 
| 244 |   | elfzelz 10100 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((◡𝐺‘𝑘) ∈ (1...(♯‘𝐴)) → (◡𝐺‘𝑘) ∈ ℤ) | 
| 245 | 243, 244 | syl 14 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → (◡𝐺‘𝑘) ∈ ℤ) | 
| 246 |   | btwnnz 9420 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑚 ∈ ℤ ∧ 𝑚 < (◡𝐺‘𝑘) ∧ (◡𝐺‘𝑘) < (𝑚 + 1)) → ¬ (◡𝐺‘𝑘) ∈ ℤ) | 
| 247 | 246 | 3expib 1208 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑚 ∈ ℤ → ((𝑚 < (◡𝐺‘𝑘) ∧ (◡𝐺‘𝑘) < (𝑚 + 1)) → ¬ (◡𝐺‘𝑘) ∈ ℤ)) | 
| 248 | 247 | con2d 625 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑚 ∈ ℤ → ((◡𝐺‘𝑘) ∈ ℤ → ¬ (𝑚 < (◡𝐺‘𝑘) ∧ (◡𝐺‘𝑘) < (𝑚 + 1)))) | 
| 249 | 240, 245,
248 | sylc 62 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → ¬ (𝑚 < (◡𝐺‘𝑘) ∧ (◡𝐺‘𝑘) < (𝑚 + 1))) | 
| 250 | 31 | ad2antrr 488 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → 𝐺 Isom < , < ((1...(♯‘𝐴)), 𝐴)) | 
| 251 | 173 | adantrr 479 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → 𝑚 ∈ (1...(♯‘𝐴))) | 
| 252 |   | isorel 5855 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐺 Isom < , <
((1...(♯‘𝐴)),
𝐴) ∧ (𝑚 ∈
(1...(♯‘𝐴))
∧ (◡𝐺‘𝑘) ∈ (1...(♯‘𝐴)))) → (𝑚 < (◡𝐺‘𝑘) ↔ (𝐺‘𝑚) < (𝐺‘(◡𝐺‘𝑘)))) | 
| 253 | 250, 251,
243, 252 | syl12anc 1247 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → (𝑚 < (◡𝐺‘𝑘) ↔ (𝐺‘𝑚) < (𝐺‘(◡𝐺‘𝑘)))) | 
| 254 | 33 | ad2antrr 488 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → 𝐺:(1...(♯‘𝐴))–1-1-onto→𝐴) | 
| 255 | 254, 242,
113 | syl2anc 411 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → (𝐺‘(◡𝐺‘𝑘)) = 𝑘) | 
| 256 | 255 | breq2d 4045 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → ((𝐺‘𝑚) < (𝐺‘(◡𝐺‘𝑘)) ↔ (𝐺‘𝑚) < 𝑘)) | 
| 257 | 193 | adantrr 479 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → (𝐺‘𝑚) ∈ ℤ) | 
| 258 | 30 | ad2antrr 488 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → 𝐴 ⊆ (ℤ≥‘𝑀)) | 
| 259 | 258, 242 | sseldd 3184 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → 𝑘 ∈ (ℤ≥‘𝑀)) | 
| 260 |   | eluzelz 9610 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → 𝑘 ∈ ℤ) | 
| 261 | 259, 260 | syl 14 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → 𝑘 ∈ ℤ) | 
| 262 |   | zltp1le 9380 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐺‘𝑚) ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝐺‘𝑚) < 𝑘 ↔ ((𝐺‘𝑚) + 1) ≤ 𝑘)) | 
| 263 | 257, 261,
262 | syl2anc 411 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → ((𝐺‘𝑚) < 𝑘 ↔ ((𝐺‘𝑚) + 1) ≤ 𝑘)) | 
| 264 | 253, 256,
263 | 3bitrd 214 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → (𝑚 < (◡𝐺‘𝑘) ↔ ((𝐺‘𝑚) + 1) ≤ 𝑘)) | 
| 265 | 188 | adantrr 479 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → (𝑚 + 1) ∈ (1...(♯‘𝐴))) | 
| 266 |   | isorel 5855 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐺 Isom < , <
((1...(♯‘𝐴)),
𝐴) ∧ ((◡𝐺‘𝑘) ∈ (1...(♯‘𝐴)) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴)))) → ((◡𝐺‘𝑘) < (𝑚 + 1) ↔ (𝐺‘(◡𝐺‘𝑘)) < (𝐺‘(𝑚 + 1)))) | 
| 267 | 250, 243,
265, 266 | syl12anc 1247 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → ((◡𝐺‘𝑘) < (𝑚 + 1) ↔ (𝐺‘(◡𝐺‘𝑘)) < (𝐺‘(𝑚 + 1)))) | 
| 268 | 255 | breq1d 4043 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → ((𝐺‘(◡𝐺‘𝑘)) < (𝐺‘(𝑚 + 1)) ↔ 𝑘 < (𝐺‘(𝑚 + 1)))) | 
| 269 | 197 | adantrr 479 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → (𝐺‘(𝑚 + 1)) ∈ ℤ) | 
| 270 |   | zltlem1 9383 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑘 ∈ ℤ ∧ (𝐺‘(𝑚 + 1)) ∈ ℤ) → (𝑘 < (𝐺‘(𝑚 + 1)) ↔ 𝑘 ≤ ((𝐺‘(𝑚 + 1)) − 1))) | 
| 271 | 261, 269,
270 | syl2anc 411 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → (𝑘 < (𝐺‘(𝑚 + 1)) ↔ 𝑘 ≤ ((𝐺‘(𝑚 + 1)) − 1))) | 
| 272 | 267, 268,
271 | 3bitrd 214 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → ((◡𝐺‘𝑘) < (𝑚 + 1) ↔ 𝑘 ≤ ((𝐺‘(𝑚 + 1)) − 1))) | 
| 273 | 264, 272 | anbi12d 473 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → ((𝑚 < (◡𝐺‘𝑘) ∧ (◡𝐺‘𝑘) < (𝑚 + 1)) ↔ (((𝐺‘𝑚) + 1) ≤ 𝑘 ∧ 𝑘 ≤ ((𝐺‘(𝑚 + 1)) − 1)))) | 
| 274 | 249, 273 | mtbid 673 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(♯‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → ¬ (((𝐺‘𝑚) + 1) ≤ 𝑘 ∧ 𝑘 ≤ ((𝐺‘(𝑚 + 1)) − 1))) | 
| 275 | 274 | expr 375 | 
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝑘 ∈ 𝐴 → ¬ (((𝐺‘𝑚) + 1) ≤ 𝑘 ∧ 𝑘 ≤ ((𝐺‘(𝑚 + 1)) − 1)))) | 
| 276 | 275 | con2d 625 | 
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → ((((𝐺‘𝑚) + 1) ≤ 𝑘 ∧ 𝑘 ≤ ((𝐺‘(𝑚 + 1)) − 1)) → ¬ 𝑘 ∈ 𝐴)) | 
| 277 |   | elfzle1 10102 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ (((𝐺‘𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1)) → ((𝐺‘𝑚) + 1) ≤ 𝑘) | 
| 278 |   | elfzle2 10103 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ (((𝐺‘𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1)) → 𝑘 ≤ ((𝐺‘(𝑚 + 1)) − 1)) | 
| 279 | 277, 278 | jca 306 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ (((𝐺‘𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1)) → (((𝐺‘𝑚) + 1) ≤ 𝑘 ∧ 𝑘 ≤ ((𝐺‘(𝑚 + 1)) − 1))) | 
| 280 | 276, 279 | impel 280 | 
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) ∧ 𝑘 ∈ (((𝐺‘𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1))) → ¬ 𝑘 ∈ 𝐴) | 
| 281 | 239, 280 | eldifd 3167 | 
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) ∧ 𝑘 ∈ (((𝐺‘𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1))) → 𝑘 ∈ ((𝑀...(𝐺‘(♯‘𝐴))) ∖ 𝐴)) | 
| 282 | 212, 281,
123 | syl2anc 411 | 
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) ∧ 𝑘 ∈ (((𝐺‘𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1))) → (𝐹‘𝑘) = 𝑍) | 
| 283 | 179, 183,
205, 211, 282, 208, 209 | seq3id2 10618 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) = (seq𝑀( + , 𝐹)‘((𝐺‘(𝑚 + 1)) − 1))) | 
| 284 | 283 | oveq1d 5937 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → ((seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) + (𝐹‘(𝐺‘(𝑚 + 1)))) = ((seq𝑀( + , 𝐹)‘((𝐺‘(𝑚 + 1)) − 1)) + (𝐹‘(𝐺‘(𝑚 + 1))))) | 
| 285 |   | fveq2 5558 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = (𝑚 + 1) → (𝐻‘𝑛) = (𝐻‘(𝑚 + 1))) | 
| 286 |   | 2fveq3 5563 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = (𝑚 + 1) → (𝐹‘(𝐺‘𝑛)) = (𝐹‘(𝐺‘(𝑚 + 1)))) | 
| 287 | 285, 286 | eqeq12d 2211 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = (𝑚 + 1) → ((𝐻‘𝑛) = (𝐹‘(𝐺‘𝑛)) ↔ (𝐻‘(𝑚 + 1)) = (𝐹‘(𝐺‘(𝑚 + 1))))) | 
| 288 | 287 | imbi2d 230 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = (𝑚 + 1) → ((𝜑 → (𝐻‘𝑛) = (𝐹‘(𝐺‘𝑛))) ↔ (𝜑 → (𝐻‘(𝑚 + 1)) = (𝐹‘(𝐺‘(𝑚 + 1)))))) | 
| 289 | 288, 153 | vtoclga 2830 | 
. . . . . . . . . . . . . . 15
⊢ ((𝑚 + 1) ∈
(1...(♯‘𝐴))
→ (𝜑 → (𝐻‘(𝑚 + 1)) = (𝐹‘(𝐺‘(𝑚 + 1))))) | 
| 290 | 289 | impcom 125 | 
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐻‘(𝑚 + 1)) = (𝐹‘(𝐺‘(𝑚 + 1)))) | 
| 291 | 290 | adantlr 477 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐻‘(𝑚 + 1)) = (𝐹‘(𝐺‘(𝑚 + 1)))) | 
| 292 | 291 | oveq2d 5938 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → ((seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) + (𝐻‘(𝑚 + 1))) = ((seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) + (𝐹‘(𝐺‘(𝑚 + 1))))) | 
| 293 | 197 | zcnd 9449 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐺‘(𝑚 + 1)) ∈ ℂ) | 
| 294 |   | ax-1cn 7972 | 
. . . . . . . . . . . . . . 15
⊢ 1 ∈
ℂ | 
| 295 |   | npcan 8235 | 
. . . . . . . . . . . . . . 15
⊢ (((𝐺‘(𝑚 + 1)) ∈ ℂ ∧ 1 ∈ ℂ)
→ (((𝐺‘(𝑚 + 1)) − 1) + 1) = (𝐺‘(𝑚 + 1))) | 
| 296 | 293, 294,
295 | sylancl 413 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (((𝐺‘(𝑚 + 1)) − 1) + 1) = (𝐺‘(𝑚 + 1))) | 
| 297 |   | uztrn 9618 | 
. . . . . . . . . . . . . . . 16
⊢ ((((𝐺‘(𝑚 + 1)) − 1) ∈
(ℤ≥‘(𝐺‘𝑚)) ∧ (𝐺‘𝑚) ∈ (ℤ≥‘𝑀)) → ((𝐺‘(𝑚 + 1)) − 1) ∈
(ℤ≥‘𝑀)) | 
| 298 | 205, 183,
297 | syl2anc 411 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → ((𝐺‘(𝑚 + 1)) − 1) ∈
(ℤ≥‘𝑀)) | 
| 299 |   | eluzp1p1 9627 | 
. . . . . . . . . . . . . . 15
⊢ (((𝐺‘(𝑚 + 1)) − 1) ∈
(ℤ≥‘𝑀) → (((𝐺‘(𝑚 + 1)) − 1) + 1) ∈
(ℤ≥‘(𝑀 + 1))) | 
| 300 | 298, 299 | syl 14 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (((𝐺‘(𝑚 + 1)) − 1) + 1) ∈
(ℤ≥‘(𝑀 + 1))) | 
| 301 | 296, 300 | eqeltrrd 2274 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (𝐺‘(𝑚 + 1)) ∈
(ℤ≥‘(𝑀 + 1))) | 
| 302 | 207, 301,
208, 209 | seq3m1 10565 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = ((seq𝑀( + , 𝐹)‘((𝐺‘(𝑚 + 1)) − 1)) + (𝐹‘(𝐺‘(𝑚 + 1))))) | 
| 303 | 284, 292,
302 | 3eqtr4rd 2240 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = ((seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) + (𝐻‘(𝑚 + 1)))) | 
| 304 | 177, 159 | sylan 283 | 
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) ∧ 𝑘 ∈ (ℤ≥‘1))
→ (𝐻‘𝑘) ∈ 𝑆) | 
| 305 | 165, 304,
209 | seq3p1 10557 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → (seq1( + , 𝐻)‘(𝑚 + 1)) = ((seq1( + , 𝐻)‘𝑚) + (𝐻‘(𝑚 + 1)))) | 
| 306 | 303, 305 | eqeq12d 2211 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → ((seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = (seq1( + , 𝐻)‘(𝑚 + 1)) ↔ ((seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) + (𝐻‘(𝑚 + 1))) = ((seq1( + , 𝐻)‘𝑚) + (𝐻‘(𝑚 + 1))))) | 
| 307 | 176, 306 | imbitrrid 156 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(♯‘𝐴))) → ((seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) = (seq1( + , 𝐻)‘𝑚) → (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = (seq1( + , 𝐻)‘(𝑚 + 1)))) | 
| 308 | 307 | ex 115 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝑚 + 1) ∈ (1...(♯‘𝐴)) → ((seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) = (seq1( + , 𝐻)‘𝑚) → (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = (seq1( + , 𝐻)‘(𝑚 + 1))))) | 
| 309 | 308 | a2d 26 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (((𝑚 + 1) ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) = (seq1( + , 𝐻)‘𝑚)) → ((𝑚 + 1) ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = (seq1( + , 𝐻)‘(𝑚 + 1))))) | 
| 310 | 175, 309 | syld 45 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝑚 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) = (seq1( + , 𝐻)‘𝑚)) → ((𝑚 + 1) ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = (seq1( + , 𝐻)‘(𝑚 + 1))))) | 
| 311 | 310 | expcom 116 | 
. . . . 5
⊢ (𝑚 ∈ ℕ → (𝜑 → ((𝑚 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) = (seq1( + , 𝐻)‘𝑚)) → ((𝑚 + 1) ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = (seq1( + , 𝐻)‘(𝑚 + 1)))))) | 
| 312 | 311 | a2d 26 | 
. . . 4
⊢ (𝑚 ∈ ℕ → ((𝜑 → (𝑚 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) = (seq1( + , 𝐻)‘𝑚))) → (𝜑 → ((𝑚 + 1) ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = (seq1( + , 𝐻)‘(𝑚 + 1)))))) | 
| 313 | 9, 15, 21, 27, 162, 312 | nnind 9006 | 
. . 3
⊢ (𝑁 ∈ ℕ → (𝜑 → (𝑁 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑁)) = (seq1( + , 𝐻)‘𝑁)))) | 
| 314 | 3, 313 | mpcom 36 | 
. 2
⊢ (𝜑 → (𝑁 ∈ (1...(♯‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑁)) = (seq1( + , 𝐻)‘𝑁))) | 
| 315 | 1, 314 | mpd 13 | 
1
⊢ (𝜑 → (seq𝑀( + , 𝐹)‘(𝐺‘𝑁)) = (seq1( + , 𝐻)‘𝑁)) |